References
- Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Advan. Comput. Des., 6(2), 117-133. https://doi.org/10.12989/acd.2021.6.2.117.
- Abdullah, W.N., Khalaf, B.S., Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2021), "Thermal effects on dynamic response of GOP-Reinforced beams under blast load", Advan. Concrete Construct., 12(3), 167-174. https://doi.org/10.12989/acc.2021.12.3.167.
- Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupled Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
- Ahmed, R.A., Al-Toki, M.H., Faleh, N.M. and Fenjan, R.M. (2021), "Nonlinear stability of higher-order porous metal foam curved panels with stiffeners", Transport Porous Media, 1-16. https://doi.org/10.1007/s11242-021-01691-2.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Advan. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://dx.doi.org/10.12989/sss.2016.18.6.1125.
- Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Advan. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
- Barati, M.R. and Zenkour, A. (2019b), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran. J. Sci. Technol. Transact. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
- Barati, M.R. and Zenkour, A.M. (2019a), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Advan. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
- Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst, 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573.
- Ebrahimi, F. and Barati, M.R. (2018a), "Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams", Microsyst. Technol., 24(8), 3521-3536. https://doi.org/10.1007/s00542-018-3771-z.
- Ebrahimi, F. and Barati, M.R. (2018b), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory", Composite Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021.
- Ebrahimi, F. and Barati, M.R. (2018c), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
- Ebrahimi, F. and Barati, M.R. (2018d), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693.
- Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", Thermal Stresses, 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
- Ebrahimi, F. and Barati, M.R. (2019b), "Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects", Iran. J. Sci. Technol. Transact. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
- Ebrahimi, F. and Barati, M.R. (2020), "Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field", Waves Random Complex Media, 30(2), 308-327. https://doi.org/10.1080/17455030.2018.1506596.
- Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
- Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020b), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Advan. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
- Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Advan. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
- Guo, J., Chen, J. and Pan, E. (2016), "Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory", Compos. Part B: Eng., 107, 84-96. https://doi.org/10.1016/j.compositesb.2016.09.044.
- Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Advan. Mater. Res., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179.
- Heydari, A. (2020), "Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer", Advan. Comput. Des., 5(4), 397-416. https://doi.org/10.12989/acd.2020.5.4.397.
- Ji, X., Hou, C., Shi, M., Yan, Y. and Liu, Y. (2020), "An insight into the research concerning Panax ginseng CA Meyer polysaccharides: A review", Food Rev. Int., 1-17. https://doi.org/10.1080/87559129.2020.1771363.
- Jiang, L., Wang, Y., Wang, X., Ning, F., Wen, S., Zhou, Y. and Zhou, F.L. (2021), "Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses", Compos. Part A: Applied Sci. Manufact., 147, 106461. https://doi.org/10.1016/j.compositesa.2021.106461.
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
- Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidiscipline Modeling Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401.
- Li, X., Dong, Z. Q., Yu, P., Wang, L. P., Niu, X. D., Yamaguchi, H. and Li, D. C. (2021). Effect of self-assembly on fluorescence in magnetic multiphase flows and its application on the novel detection for COVID-19. Physics of Fluids, 33(4), 042004. https://doi.org/10.1063/5.0048123.
- Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.
- Li, Y., Macdonald, D.D., Yang, J., Qiu, J. and Wang, S. (2020), "Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics", Corrosion Sci., 163, 108280. https://doi.org/10.1016/j.corsci.2019.108280.
- Liu, H., Liu, H. and Yang, J. (2018), "Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation", Compos. Part B: Eng., 155, 244-256. https://doi.org/10.1016/j.compositesb.2018.08.042.
- Liu, X., Zhang, G., Li, J., Shi, G., Zhou, M., Huang, B. and Yang, W. (2020), "Deep learning for Feynman's path integral in strong-field time-dependent dynamics", Phys. Rev. Lett., 124(11), 113202. https://doi.org/10.1103/PhysRevLett.124.113202.
- Lu, C., Zhu, R., Yu, F., Jiang, X., Liu, Z., Dong, L. and Ou, Z. (2021), "Gear rotational speed sensor based on FeCoSiB/Pb (Zr, Ti) O3 magnetoelectric composite", Measure., 168, 108409. https://doi.org/10.1016/j.measurement.2020.108409.
- Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
- Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", Journal Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
- Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
- Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Advan. Concrete Construct., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
- Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Advan. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
- Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Advan. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
- Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), "Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM", Advan. Comput. Des., 5(3), 305-321. https://doi.org/10.12989/acd.2020.5.3.305.
- Raheef, K.M., Ahmed, R.A., Nayeeif, A.A., Fenjan, R.M. and Faleh, N.M. (2021), "Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment", Geomech. Eng., 26(1), 89-99. https://doi.org/10.12989/gae.2021.26.1.089.
- Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Advan. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
- Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Advan. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
- Singh, A. and Kumari, P. (2020), "Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach", Advan. Comput. Des., 5(1), 55-89. https://doi.org/10.12989/acd.2020.5.1.055.
- Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
- Tong, X., Zhang, F., Ji, B., Sheng, M. and Tang, Y. (2016), "Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries", Advan. Mater., 28(45), 9979-9985. https://doi.org/10.1002/adma.201603735.
- Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y. and Cheng, H. M. (2018), "Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage", Nature Chemistry, 10(6), 667-672. https://doi.org/10.1038/s41557-018-0045-4.
- Xu, X. and Nieto-Vesperinas, M. (2019), "Azimuthal imaginary Poynting momentum density", Phys. Rev. Lett., 123(23), 233902. https://doi.org/10.1103/PhysRevLett.123.233902.
- Yang, W., Lin, Y., Chen, X., Xu, Y., Zhang, H., Ciappina, M. and Song, X. (2021), "Wave mixing and high-harmonic generation enhancement by a two-color field driven dielectric metasurface", Chinese Optics Lett., 19(12), 123202. https://doi.org/10.3788/COL202119.123202.
- Zhang, X., Tang, Y., Zhang, F. and Lee, C.S. (2016), "A novel aluminum-graphite dual-ion battery", Advan. Energy Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.
- Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y. and Ma, Q. (2021), "Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating", Materi. Character., 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.
- Zhou, H., Xu, C., Lu, C., Jiang, X., Zhang, Z., Wang, J. and Wang, L. (2021), "Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing", Sensors Actuators A: Phys., 329, 112789. https://doi.org/10.1016/j.sna.2021.112789.