DOI QR코드

DOI QR Code

Renovation of steel beams using by imperfect functionally graded materials plate

  • Daouadji, Tahar Hassaine (Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Abderezak, Rabahi (Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Rabia, Benferhat (Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Tounsi, Abdelouahed (Laboratory of Geomatics and sustainable development, University of Tiaret)
  • 투고 : 2021.07.19
  • 심사 : 2021.11.16
  • 발행 : 2021.12.25

초록

In this paper, a new approach of interface stress analysis in steel beam strengthened by porous FGM (Functionally Graded Materials) is presented to calculate the shear stress in the hybrid steel beam and loaded by a uniformly distributed load. The results show that there exists a high concentration of shear stress at the ends of the imperfect FGM, which might result in premature failure of the strengthening scheme at these locations. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as the rigidity of FGM plate (degree of homogeneity), the porosity index of FGM and the thickness of adhesive all were found to have a marked effect on the magnitude of maximum shear stress in the FGM member. we can conclude that the new approach is general in nature and may be applicable to all kinds of materials.

키워드

과제정보

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

참고문헌

  1. Abderezak, R., Daouadji, T.H., Rabia, B. and Belkacem, A. (2018), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113.
  2. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://dx.doi.org/10.12989/sem.2021.77.6.797.
  3. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. http://dx.doi.org/10.12989/scs.2020.35.1.147
  4. Ameur M., Tounsi. A., Benyoucef. S. and Adda, B. (2008), "Stress analysis of steel beams strengthened with a bonded hygrothermal aged composite plate", Int. J. Mech. Mater. Des., 5(2), 143-156. https://doi.org/10.1007/s10999-008-9090-2.
  5. Amara, K., Antar, K. and Benyoucef, S. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  6. Akbas, S.D., Fageehi, Y.A. and Assie, A.E. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3.
  7. Ashraful, A. and Al Riyami, R. (2018), "Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates", Construct. Build. Mater., 162(20), 683-696. https://doi.org/10.1016/j.conbuildmat.2017.12.011.
  8. Ait Atmane, H., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x.
  9. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. http://dx.doi.org/10.12989/sem.2020.73.3.225.
  10. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. http://dx.doi.org/10.12989/sem.2020.73.2.191.
  11. Babak, S. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. http://dx.doi.org/10.12989/scs.2020.35.5.659.
  12. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2020) "Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov", Steel Compos. Struct., 36(6), 671-687. http://dx.doi.org/10.12989/scs.2020.36.6.671.
  13. Benachour A, Benyoucef S, Tounsi, A. and Adda bedia. E.A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.
  14. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
  15. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://dx.doi.org/10.12989/cme.2021.3.1.025.
  16. Benferhat R., Hassaine Daouadji, Tahar. and Rabahi, A. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://dx.doi.org/10.12989/cme.2021.3.1.041.
  17. Benferhat, R., Hassaine Daouadji, T. and Rabahi, A. (2021c), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., 10(2), 77-98. http://dx.doi.org/10.12989/amr.2021.10.2.077.
  18. Benferhat R., Hassaine Daouadji T. and R. Abderezak (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupled Systems Mechanics, Volume 9, Number 6, December 2020, pages 499-519. http://dx.doi.org/10.12989/csm.2020.9.6.499
  19. Bensatallah Tayeb, T. Hassaine Daouadji, M. Zidour (2020) "Influences the Shape of the Floor on the Behavior of Buildings Under Seismic Effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, Vol1 - Nano Technology and Advanced Materials, pages 26-42, 2020. https://doi.org/10.1007/978-3-030-43268-3_3
  20. Ben Henni M., B. Abbes, T. Hassaine Daouadji, F. Abbes and B. Adim (2021) "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates" Steel and Composite Structures, Volume 39, Number 6, June25 2021, pages 751-763. http://dx.doi.org/10.12989/scs.2021.39.6.751.
  21. Bensatallah, T., Tahar Hassaine, D., Rabahi, A. and Abdelouahed, T. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417.
  22. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535.
  23. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061
  24. Bekki, H., Benferhat, R. and Tahar Hassaine, D. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coup. Syst. Mech., 10(1), 61-77. http://dx.doi.org/10.12989/csm.2021.10.1.061.
  25. Bouakaz, K., Daouadji, T.H., Meftah, S.A., Ameur, M., Tounsi, A. and Bedia, E.A. (2014), "A Numerical analysis of steel beams strengthened composite materials", Mech. Compos. Mater., 50(4), 685-696. https://doi.org/10.1007/s11029-014-9435-x.
  26. Ebrahimi, F. and Seyfi, A. (2020), "Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01069-w.
  27. Ebrahimi, F., Dabbagh, A. and Taheri, M. (2021), "Vibration analysis of porous metal foam plates rested on viscoelastic substrate", Eng. Comput., 37, 3727-3739. https://doi.org/10.1007/s00366-020-01031-w.
  28. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://dx.doi.org/10.12989/scs.2020.36.3.293.
  29. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. http://dx.doi.org/10.12989/anr.2020.8.4.283.
  30. David, H., Rodrigo, G. and Carlos, S. (2020), "GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects", Thin-Wall. Struct., V150, 106706. https://doi.org/10.1016/j.tws.2020.106706.
  31. Lowe, D., Roy, K., Das, R., Clifton, C.G. and Lim, J.B. (2020), "Full scale experiments on splitting behaviour of concrete slabs in steel concrete composite beams with shear stud connection", Struct., 23, 126-138. https://doi.org/10.1016/j.istruc.2019.10.008.
  32. Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36(1), 47-62. http://dx.doi.org/10.12989/scs.2020.36.1.047.
  33. Ghannadpour S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., 34(20), 227-239. http://dx.doi.org/10.12989/scs.2020.34.2.227.
  34. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Adhesion Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.
  35. Hamed, M.A., Abo-bakr, R.M. and Mohamed, S.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36, 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  36. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Adim, B. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409.
  37. Hassaine Daouadji, T. (2017) "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  38. Hassaine Daouadji, T., Benyoucef, S. and Adda, B. (2008), "Interfacial stresses concentrations in FRP - Damaged RC hybrid beams", Compos. Interfaces, 15, 425-440. https://doi.org/10.1163/156855408784514702.
  39. Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhesion Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  40. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Maint., 7(3), 233-259. http://dx.doi.org/10.12989/smm.2020.7.3.233.
  41. Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021a), "New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://dx.doi.org/10.12989/sem.2021.78.3.31.
  42. Hassaine Daouadji T., Rabahi A., Benferhat R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coup. Syst. Mech., 10(2), 161-184. http://dx.doi.org/10.12989/csm.2021.10.2.161.
  43. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Tounsi, A. (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://dx.doi.org/10.12989/sem.2021.78.5.573.
  44. Hassaine Daouadji T., Rabahi, A. and Benferhatm, R. (2021d), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., 79(5), 531-540. http://dx.doi.org/10.12989/sem.2021.79.5.531.
  45. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2021e), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Coup. Sys. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393.
  46. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://dx.doi.org/10.12989/cac.2020.26.3.285.
  47. Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. http://dx.doi.org/10.12989/scs.2020.36.1.001.
  48. Jones, R., Swamy, R.N. and Charif, A. (1988), "Plate separation and anchorage of reinforced concrete beams strengthened by epoxy - bonded steel plates", Struct. Eng., 66(5/1), 85-94. http://worldcat.org/issn/14665123.
  49. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coup. Syst. Mech., 9(6), 575-597. http://dx.doi.org/10.12989/csm.2020.9.6.575.
  50. Khaniki, H.B., Ghayesh, M.H. and Hussain, S. (2020), "Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01208-3.
  51. Karami, B., Janghorban, M. and Tounsi, A. (2019), "On pre stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  52. Kai, Y., Yao, Z., Hao, C. and Vahid, T. (2020), "Vibrational characteristic of FG porous conical shells using Donnell\'s shell theory", Steel Compos. Struct., 35(2), 249-260. http://dx.doi.org/10.12989/scs.2020.35.2.249.
  53. Krour B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 9, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008.
  54. Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Struct., 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010.
  55. Dehsaraji, M.L., Saidi, A.R. and Mohammadi, M. (2020), "Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory", Struct. Eng. Mech., 73(3), 256-269. http://dx.doi.org/10.12989/sem.2020.73.3.256.
  56. Murat, Y. and Mehmet, A. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. http://dx.doi.org/10.12989/cac.2020.26.2.107.
  57. Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., 8(1), 59-68. http://dx.doi.org/10.12989/anr.2020.8.1.059.
  58. Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Aznieta, F.N (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, 13(1), 135-165. https://doi.org/10.12989/cac.2014.13.1.135.
  59. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manage., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.
  60. Pello, L., Leire, G., Ignacio, P. and Jose-Tomas, S.J. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Construct. Build. Mater., 235, 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790.
  61. Rabahi, A., Hassaine Daouadji, T. and Benferhat R. (2021a), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://dx.doi.org/10.12989/acd.2021.6.2.117.
  62. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://dx.doi.org/10.12989/amr.2021.10.1.023.
  63. Rabahi A., Hassaine Daouadji. T., Benferhat, R. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Comput. Des., 6(3), 169-190. http://dx.doi.org/10.12989/acd.2021.6.3.169.
  64. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermomechanical loading", Struct. Eng. Mech., 78(6), 703-714. http://dx.doi.org/10.12989/sem.2021.78.6.703.
  65. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021e), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Coup. Syst. Mech., 10(4), 299-316. http://dx.doi.org/10.12989/csm.2021.10.4.299.
  66. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021f), "New solution for damaged porous RC cantilever beamsstrengthening by composite plate", Adv. Mater. Res., 10(3), 169-194. http://dx.doi.org/10.12989/amr.2021.10.3.169.
  67. Rabahi, A., Benferhat, R. and Hassaine Daouadji, T. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2) 83-103. https://doi.org/10.12989/amr.2018.7.2.083.
  68. Rabia, B., Hassaine Daouadji, T. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://dx.doi.org/10.12989/amr.2020.9.4.265.
  69. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coup. Syst. Mech., 9(5), 473-498. http://dx.doi.org/10.12989/csm.2020.9.5.473.
  70. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-554. http://dx.doi.org/10.12989/scs.2020.35.4.545.
  71. Ahmed, R.A., Mustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. http://dx.doi.org/10.12989/sem.2020.76.3.413.
  72. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4). https://doi.org/10.12989/cac.2020.25.4.311.
  73. Sahmani, S., Fattahi, A.M. and Ahmed, N.A. (2020), "Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL", Eng. Comput., 36, 1559-1578. https://doi.org/10.1007/s00366-019-00782-5.
  74. Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. https://doi.org/10.1016/S0141-0296(00)00090-0
  75. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. http://dx.doi.org/10.12989/anr.2020.8.1.049.
  76. Tounsi, A., Hassaine Daouadji, T., Benyoucef, S. and Adda bedia, E.A. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhesion Adhesives, 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  77. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021a), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://dx.doi.org/10.12989/sem.2021.77.2.217.
  78. Tlidji, Y., Benferhat, R., Luan Cong, T., Hassaine Daouadji, T. and Tounsi, A. (2021b), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347.
  79. Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J.P. and Tahouneh, V. (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-303. http://dx.doi.org/10.12989/scs.2020.35.2.295.
  80. Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng. 158, https://doi.org/10.1016/j.compositesb.2018.09.089.
  81. Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Construct. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.
  82. Zaoui, F.Z., Tounsi, A., Ouinas, D. and Olay, J.A.V. (2020), "A refined HSDT for bending and dynamic analysis of FGM plates", Struct. Eng. Mech., 74(1), 105-119. http://dx.doi.org/10.12989/sem.2020.74.1.105