Acknowledgement
This research has been made possible through funding from Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (Grant number: R2811A03) and Canada Foundation for Innovation (CFI) WindEEE Dome Grant (Grant number: X2281838).
References
- Alexander, C.R. and Wurman, J. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes", Month. Weather Rev., 133(1), 72-96. https://doi.org/10.1175/MWR-2855.1.
- ASCE/SEI (ASCE/Structural Engineering Institute) (2016), "Minimum design loads for buildings and other structures", ASCE/SEI 7-16, Reston, VA
- Ashton, R., Refan, M., Iungo, G.V. and Hangan, H. (2019), "Wandering corrections from PIV measurements of tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 163-172. https://doi.org/10.1016/j.jweia.2019.02.010.
- Baker, C. and Sterling, M. (2019), "Are tornado vortex generators fit for purpose?", J. Wind Eng. Ind. Aerod., 190, 287-292. https://doi.org/10.1016/j.jweia.2019.05.011.
- Baker, G.L. and Church, C.R. (1979), "Measurements of core radii and peak velocities in modeled atmospheric vortices", J. Atmos. Sci., 36(12), 2413-2424. https://doi.org/10.1175/1520-0469(1979)036<2413:mocrap>2.0.co;2.
- Bluestein, H.B., Weiss, C.C. and Pazmany, A.L. (2004), "The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, doppler radar observations", Month. Weather Rev., 132(10), 2325-2337. https://doi.org/10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2.
- Brooks, E.M. (1951), "Tornadoes and related phenomena", Compendium of Meteorology American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-70-9_55.
- Brown, R.A., Lemon, L.R. and Burgess, D.W. (1978), "Tornado detection by pulsed Doppler radar", Month. Weather Rev., 106(1), 29-38. https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.
- Case, J., Sarkar, P. and Sritharan, S. (2014), "Effect of low-rise building geometry on tornado-induced loads", J. Wind Eng. Ind. Aerod., 133, 124-134. https://doi.org/10.1016/j.jweia.2014.02.001.
- Church, C., Snow, J.T., Baker, G.L. and Agee, E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2.
- Dessens, J. Jr. (1972), "Influence of ground roughness on tornadoes: a laboratory simulation", J. Appl. Meteorol. 11(1), 72-75. https://doi.org/10.1175/1520-0450(1972)0112.0.CO;2.
- Diamond, C.J. and Wilkins, E.M. (1984), "Translation effects on simulated tornadoes", Journal of the atmospheric sciences, 41(17), 2574-2580. https://doi.org/10.1175/1520-0469(1984)041<2574:TEOST>2.0.CO;2.
- Fiedler, B.H. and Rotunno, R. (1986), "A theory for the maximum windspeeds in tornado-like vortices", Journal of Atmospheric Sciences, 43(21), 2328-2340. https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2
- Fleming, M.R., Haan, F.L. and Sarkar, P.P. (2013), "Turbulent structure of tornado boundary layers with translation and surface roughness", In 12th Americas Conf. Wind Eng. (Seattle, WA).
- Fujita, T.T. (1958), "Tornado cyclone: Bearing system of tornadoes", In Proc. Seventh Conf. on Radar Meteorology.
- Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013.
- Geetha Rajasekharan, S., Matsui, M. and Tamura, Y. (2013), "Characteristics of internal pressures and net local roof wind forces on a building exposed to a tornado-like vortex", J. Wind Eng. Ind. Aerod., 112, 52-57. https://doi.org/10.1016/j.jweia.2012.11.005.
- Haan Jr, F.L., Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
- Haan Jr, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
- Hangan, H. (2014), "The wind engineering energy and environment (WindEEE) dome at western university, Canada", Wind Eng., JAWE, 39(4), 350-351. https://doi.org/10.5359/jawe.39.350.
- Hangan, H., Refan, M., Jubayer, C., Parvu, D. and Kilpatrick, R. (2017), "Big data from big experiments. The WindEEE dome", In Whither Turbulence and Big Data in the 21st Century? 215-230. ://doi.org/10.1007/978-3-319-41217-7_12
- Hangan, H., Refan, M., Jubayer, C., Romanic, D., Parvu, D., LoTufo, J. and Costache, A. (2017), "Novel techniques in wind engineering", J. Wind Eng. Ind. Aerod., 171, 12-33. https://doi.org/10.1016/j.jweia.2017.09.010.
- Hu, H., Yang, Z., Sarkar, P. and Haan, F. (2011), "Characterization of the wind loads and flow fields around a gable-roof building model in tornado-like winds", Experiment. Fluids, 51(3), 835-851. https://doi.org/10.1007/s00348-011-1102-6.
- Ishihara, T., Oh, S. and Tokuyama, Y. (2011), "Numerical study on flow fields of tornado-like vortices using the LES turbulence model", J. Wind Eng. Ind. Aerod., 99(4), 239-248. https://doi.org/10.1016/j.jweia.2011.01.014.
- Karami, M., Hangan, H., Carassale, L. and Peerhossaini, H. (2019), "Coherent structures in tornado-like vortices", Phys. Fluids, 31(8), 085118. https://doi.org/10.1063/1.5111530.
- Karstens, C.D., Samaras, T.M., Lee, B.D., Gallus Jr, W.A. and Finley, C.A. (2010), "Near-ground pressure and wind measurements in tornadoes", Month. Weather Rev., 138(7), 2570-2588. https://doi.org/10.1175/2010MWR3201.1.
- Kikitsu, H. and Okuda, Y. (2016), "Tornado-induced wind load model on a building considering relative size of building and tornado-like vortex", In Proc., 6th US-Japan Workshop Wind Eng. 12-14.
- Kopp, G.A., & Wu, C. H. (2020), "A framework to compare wind loads on low-rise buildings in tornadoes and atmospheric boundary layers", Journal of Wind Engineering and Industrial Aerodynamics, 204, 104269. https://doi.org/10.1016/j.jweia.2020.104269
- Lee, J.J., Samaras, T. and Young, C.R. (2004), "Pressure measurements at the ground in an F-4 tornado", In Preprints, 22d Conf. Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 15.3.
- Lee, W.C. and Wurman, J. (2005), "Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999", J. Atmos. Sci., 62(7), 2373-2393. https://doi.org/10.1175/JAS3489.1.
- Lemon, L.R. and Umscheid, M. (2008), "The Greensburg, KS tornadic storm: a storm of extremes", 24th Conf. on Severe Local Storms, 2.4. http://ams.confex.com/ams/24SLS/techprogram/paper_141811.htm
- Leslie, F.W. (1977), "Surface roughness effects on suction vortex formation: A laboratory simulation", J. Atmos. Sci., 34(7), 1022-1027. https://doi.org/10.1175/1520-0469(1977)034<1022:SREOSV>2.0.CO;2.
- Lewellen, W.S., Lewellen, D.C. and Sykes, R.I. (1997), "Large-eddy simulation of a tornado's interaction with the surface", J. Atmos. Sci., 54(5), 581-605. https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.
- Liu, Z. and Ishihara, T. (2015), "Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations", J. Wind Eng. Ind. Aerod., 145, 42-60. https://doi.org/10.1016/j.jweia.2015.05.008.
- Liu, Z. and Ishihara, T. (2016), "Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations", J. Wind Eng. Ind. Aerod., 151, 1-24. https://doi.org/10.1016/j.jweia.2016.01.006.
- Lombardo, F.T., Roueche, D.B. and Prevatt, D.O. (2015), "Comparison of two methods of near-surface wind speed estimation in the 22 May, 2011 Joplin, Missouri Tornado", J. Wind Eng. Ind. Aerod., 138, 87-97. https://doi.org/10.1016/j.jweia.2014.12.007.
- Matsui, M. and Tamura, Y. (2009), "Influence of incident flow conditions on generation of tornado-like flow", In Proc. 11th Amer. Confer. Wind Eng., Puerto Rico, U.S.A.
- Mishra, A.R., James, D.L. and Letchford, C.W. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96(8-9), 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.
- Nasir, Z. and Bitsuamlak, G.T. (2016), NDM-557: Computational Modelling of hill Effects On Tornado Like Vortex.
- Natarajan, D. and Hangan, H. (2012), "Large eddy simulations of translation and surface roughness effects on tornado-like vortices", J. Wind Eng. Ind. Aerod., 104, 577-584. https://doi.org/10.1016/j.jweia.2012.05.004.
- National Research Council of Canada (2015), National Building Code of Canada, 2015, National Research Council Canada.
- National Weather Service (2011), NWS Central Region Service Assessment Joplin, Missouri, Tornado - May 22, 2011.
- NOAA National Centers for Environmental Information (2011), State of the Climate: Tornadoes for Annual 2011, https://www.ncdc.noaa.gov/sotc/tornadoes/201113.
- Nolan, D.S. (2005), "A new scaling for tornado-like vortices", J. Atmos. Sci., 62(7), 2639-2645. https://doi.org/10.1175/JAS3461.1.
- Nolan, D.S. and Farrell, B.F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56(16), 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2.
- Nolan, D.S., Dahl, N.A., Bryan, G.H. and Rotunno, R. (2017), "Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence", J. Atmos. Sci., 74(5), 1573-1597. https://doi.org/10.1175/JAS-D16-0258.1.
- Razavi, A. and Sarkar, P.P. (2018), "Tornado-induced wind loads on a low-rise building: Influence of swirl ratio, translation speed and building parameters", Eng. Struct., 167, 1-12. https://doi.org/10.1016/j.engstruct.2018.03.020.
- Razavi, A., Zhang, W. and Sarkar, P.P. (2018), "Effects of ground roughness on near-surface flow field of a tornado-like vortex", Experiment. Fluids, 59(11), 1-16. https://doi.org/10.1007/s00348-018-2625-x.
- Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042.
- Refan, M., Hangan, H. and Wurman, J. (2014), "Reproducing tornadoes in laboratory using proper scaling", J. Wind Eng. Ind. Aerod., 135, 136-148. https://doi.org/10.1016/j.jweia.2014.10.008.
- Rhee, D.M. and Lombardo, F.T. (2018), "Improved near-surface wind speed characterization using damage patterns", J. Wind Eng. Ind. Aerod., 180, 288-297. https://doi.org/10.1016/j.jweia.2018.07.017.
- Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2006), "Transient loads on buildings in microburst and tornado winds", In Proc. Fourth Int. Symposium Comp. Wind Engr.(CWE2006).
- Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
- Snow, J.T. (1982), "A review of recent advances in tornado vortex dynamics", Rev. Geophys., 20(4), 953-964. https://doi.org/10.1029/RG020i004p00953.
- Snow, J.T. and Lund, D.E. (1997), "Considerations in exploring laboratory tornadolike vortices with a laser Doppler velocimeter", J. Atmos. Oceanic Technol., 14(3), 412-426. https://doi.org/10.1175/1520-0426(1997)014<0412:CIELTV>2.0.CO;2.
- Snow, J.T., Church, C.R. and Barnhart, B.J. (1980), "An investigation of the surface pressure fields beneath simulated tornado cyclones", J. Atmos. Sci., 37(5), 1013-1026. https://doi.org/10.1175/1520-0469(1980)037<1013:AIOTSP>2.0.CO;2.
- Tang, Z., Feng, C., Wu, L., Zuo, D. and James, D.L. (2018), "Characteristics of tornado-like vortices simulated in a largescale ward-type simulator", Boundary-layer meteorology, 166(2), 327-350. https://doi.org/10.1007/s10546-017-0305-7.
- Tari, P.H., Gurka, R. and Hangan, H. (2010), "Experimental investigation of tornado-like vortex dynamics with swirl ratio: The mean and turbulent flow fields", J. Wind Eng. Ind. Aerod., 98(12), 936-944. https://doi.org/10.1016/j.jweia.2010.10.001.
- Tepper, M. and Eggert, W.E. (1956), "Tornado proximity traces", Bull. Amer. Meteorol. Soc., 37(4), 152-159. https://doi.org/10.1175/1520-0477-37.4.152.
- Thampi, H., Dayal, V. and Sarkar, P.P. (2011), "Finite element analysis of interaction of tornados with a low-rise timber building", J. Wind Eng. Ind. Aerod., 99(4), 369-377. https://doi.org/10.1016/j.jweia.2011.01.004.
- Wakimoto, R.M., Atkins, N.T. and Wurman, J. (2011), "The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data", Month. Weather Rev., 139(7), 2233-2258. https://doi.org/10.1175/2010MWR3568.1.
- Wakimoto, R.M., Murphey, H.V., Dowell, D.C. and Bluestein, H.B. (2003), "The Kellerville tornado during VORTEX: Damage survey and Doppler radar analyses", Month. Weather Rev., 131(10), 2197-2221. https://doi.org/10.1175/1520-0493(2003)131<2197:TKTDVD>2.0.CO;2.
- Wakimoto, R.M., Stauffer, P., Lee, W.C., Atkins, N.T. and Wurman, J. (2012), "Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses", Month. Weather Rev., 140(11), 3397-3418. https://doi.org/10.1175/MWR-D-12-00036.1.
- Wang, J., Cao, S., Pang, W. and Cao, J. (2017), "Experimental study on effects of ground roughness on flow characteristics of tornado-like vortices", Bound. Lay. Meteorol., 162(2), 319-339. https://doi.org/10.1007/s10546-016-0201-6.
- Wang, J., Cao, S., Pang, W., Cao, J. and Zhao, L. (2016), "Wind-load characteristics of a cooling tower exposed to a translating tornado-like vortex", J. Wind Eng. Ind. Aerod., 158, 26-36. https://doi.org/10.1016/j.jweia.2016.09.008.
- Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29(6), 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.
- Wurman, J. (2002), "The multiple-vortex structure of a tornado", Weather Forecast., 17(3), 473-505. https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2.
- Wurman, J. and Alexander, C.R. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes", Month. Weather Rev., 133(1), 97-119. https://doi.org/10.1175/MWR2856.1.
- Wurman, J. and Gill, S. (2000), "Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado", Monthly weather review, 128(7), 2135-2164. https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.
- Wurman, J. and Samaras, T. (2003). Comparison of In-Situ Pressure and DOW Doppler Winds in a Tornado.
- Wurman, J., Straka, J.M. and Rasmussen, E.N. (1996), "Fine-scale Doppler radar observations of tornadoes", Sci., 272(5269), 1774-1777. https://doi.org/10.1126/science.272.5269.1774.
- Wurman, J., Straka, J., Rasmussen, E., Randall, M. and Zahrai, A. (1997), "Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar", J. Atmos. Oceanic Technol., 14(6), 1502-1512. https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.
- Yuan, F., Yan, G., Honerkamp, R., Isaac, K.M., Zhao, M. and Mao, X. (2019), "Numerical simulation of laboratory tornado simulator that can produce translating tornado-like wind flow", J. Wind Eng. Ind. Aerod., 190, 200-217. https://doi.org/10.1016/j.jweia.2019.05.001.
- Zhang, W. and Sarkar, P.P. (2008), "Effects of ground roughness on tornado like vortex using PIV", Proc. AAWE Workshop.
- Zhang, W. and Sarkar, P.P. (2012), "Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)", Experiement Fluids, 52(2), 479-493. https://doi.org/10.1007/s00348-011-1229-5.