DOI QR코드

DOI QR Code

Surface pressure measurements in translating tornado-like vortices

  • Received : 2021.09.10
  • Accepted : 2021.12.10
  • Published : 2021.12.25

Abstract

High spatial and temporal surface pressure measurements were carried out in the state-of-the-art tornado simulator, the Wind Engineering, Energy and Environment (WindEEE) Dome, to explore the characteristics of stationary and translating tornado-like vortices (TLV) for a wide range of swirl ratios (S=0.21 to 1.03). The translational speed of the TLV and the surface roughness were varied to examine their effects on tornado ground pressures, wandering, and vortex structure. It was found that wandering is more pronounced at low swirl ratios and has a substantial effect on the peak pressure magnitude for stationary TLV (error percentage ≤ 35%). A new method for removing wandering was proposed which is applicable for a wide range of swirl ratios. For translating TLV, the near-surface part lagged behind the top of the vortex, resulting in a tilt of the tornado vertical axis at higher translating speeds. Also, a veering motion of the tornado base towards the left of the direction of the translation was observed. Wandering was less pronounced for higher translation speeds. Increasing the surface roughness caused an analogous effect as lowering the swirl ratio.

Keywords

Acknowledgement

This research has been made possible through funding from Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (Grant number: R2811A03) and Canada Foundation for Innovation (CFI) WindEEE Dome Grant (Grant number: X2281838).

References

  1. Alexander, C.R. and Wurman, J. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes", Month. Weather Rev., 133(1), 72-96. https://doi.org/10.1175/MWR-2855.1.
  2. ASCE/SEI (ASCE/Structural Engineering Institute) (2016), "Minimum design loads for buildings and other structures", ASCE/SEI 7-16, Reston, VA
  3. Ashton, R., Refan, M., Iungo, G.V. and Hangan, H. (2019), "Wandering corrections from PIV measurements of tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 163-172. https://doi.org/10.1016/j.jweia.2019.02.010.
  4. Baker, C. and Sterling, M. (2019), "Are tornado vortex generators fit for purpose?", J. Wind Eng. Ind. Aerod., 190, 287-292. https://doi.org/10.1016/j.jweia.2019.05.011.
  5. Baker, G.L. and Church, C.R. (1979), "Measurements of core radii and peak velocities in modeled atmospheric vortices", J. Atmos. Sci., 36(12), 2413-2424. https://doi.org/10.1175/1520-0469(1979)036<2413:mocrap>2.0.co;2.
  6. Bluestein, H.B., Weiss, C.C. and Pazmany, A.L. (2004), "The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, doppler radar observations", Month. Weather Rev., 132(10), 2325-2337. https://doi.org/10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2.
  7. Brooks, E.M. (1951), "Tornadoes and related phenomena", Compendium of Meteorology American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-70-9_55.
  8. Brown, R.A., Lemon, L.R. and Burgess, D.W. (1978), "Tornado detection by pulsed Doppler radar", Month. Weather Rev., 106(1), 29-38. https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.
  9. Case, J., Sarkar, P. and Sritharan, S. (2014), "Effect of low-rise building geometry on tornado-induced loads", J. Wind Eng. Ind. Aerod., 133, 124-134. https://doi.org/10.1016/j.jweia.2014.02.001.
  10. Church, C., Snow, J.T., Baker, G.L. and Agee, E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2.
  11. Dessens, J. Jr. (1972), "Influence of ground roughness on tornadoes: a laboratory simulation", J. Appl. Meteorol. 11(1), 72-75. https://doi.org/10.1175/1520-0450(1972)0112.0.CO;2.
  12. Diamond, C.J. and Wilkins, E.M. (1984), "Translation effects on simulated tornadoes", Journal of the atmospheric sciences, 41(17), 2574-2580. https://doi.org/10.1175/1520-0469(1984)041<2574:TEOST>2.0.CO;2.
  13. Fiedler, B.H. and Rotunno, R. (1986), "A theory for the maximum windspeeds in tornado-like vortices", Journal of Atmospheric Sciences, 43(21), 2328-2340. https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2
  14. Fleming, M.R., Haan, F.L. and Sarkar, P.P. (2013), "Turbulent structure of tornado boundary layers with translation and surface roughness", In 12th Americas Conf. Wind Eng. (Seattle, WA).
  15. Fujita, T.T. (1958), "Tornado cyclone: Bearing system of tornadoes", In Proc. Seventh Conf. on Radar Meteorology.
  16. Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013.
  17. Geetha Rajasekharan, S., Matsui, M. and Tamura, Y. (2013), "Characteristics of internal pressures and net local roof wind forces on a building exposed to a tornado-like vortex", J. Wind Eng. Ind. Aerod., 112, 52-57. https://doi.org/10.1016/j.jweia.2012.11.005.
  18. Haan Jr, F.L., Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
  19. Haan Jr, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
  20. Hangan, H. (2014), "The wind engineering energy and environment (WindEEE) dome at western university, Canada", Wind Eng., JAWE, 39(4), 350-351. https://doi.org/10.5359/jawe.39.350.
  21. Hangan, H., Refan, M., Jubayer, C., Parvu, D. and Kilpatrick, R. (2017), "Big data from big experiments. The WindEEE dome", In Whither Turbulence and Big Data in the 21st Century? 215-230. ://doi.org/10.1007/978-3-319-41217-7_12
  22. Hangan, H., Refan, M., Jubayer, C., Romanic, D., Parvu, D., LoTufo, J. and Costache, A. (2017), "Novel techniques in wind engineering", J. Wind Eng. Ind. Aerod., 171, 12-33. https://doi.org/10.1016/j.jweia.2017.09.010.
  23. Hu, H., Yang, Z., Sarkar, P. and Haan, F. (2011), "Characterization of the wind loads and flow fields around a gable-roof building model in tornado-like winds", Experiment. Fluids, 51(3), 835-851. https://doi.org/10.1007/s00348-011-1102-6.
  24. Ishihara, T., Oh, S. and Tokuyama, Y. (2011), "Numerical study on flow fields of tornado-like vortices using the LES turbulence model", J. Wind Eng. Ind. Aerod., 99(4), 239-248. https://doi.org/10.1016/j.jweia.2011.01.014.
  25. Karami, M., Hangan, H., Carassale, L. and Peerhossaini, H. (2019), "Coherent structures in tornado-like vortices", Phys. Fluids, 31(8), 085118. https://doi.org/10.1063/1.5111530.
  26. Karstens, C.D., Samaras, T.M., Lee, B.D., Gallus Jr, W.A. and Finley, C.A. (2010), "Near-ground pressure and wind measurements in tornadoes", Month. Weather Rev., 138(7), 2570-2588. https://doi.org/10.1175/2010MWR3201.1.
  27. Kikitsu, H. and Okuda, Y. (2016), "Tornado-induced wind load model on a building considering relative size of building and tornado-like vortex", In Proc., 6th US-Japan Workshop Wind Eng. 12-14.
  28. Kopp, G.A., & Wu, C. H. (2020), "A framework to compare wind loads on low-rise buildings in tornadoes and atmospheric boundary layers", Journal of Wind Engineering and Industrial Aerodynamics, 204, 104269. https://doi.org/10.1016/j.jweia.2020.104269
  29. Lee, J.J., Samaras, T. and Young, C.R. (2004), "Pressure measurements at the ground in an F-4 tornado", In Preprints, 22d Conf. Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 15.3.
  30. Lee, W.C. and Wurman, J. (2005), "Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999", J. Atmos. Sci., 62(7), 2373-2393. https://doi.org/10.1175/JAS3489.1.
  31. Lemon, L.R. and Umscheid, M. (2008), "The Greensburg, KS tornadic storm: a storm of extremes", 24th Conf. on Severe Local Storms, 2.4. http://ams.confex.com/ams/24SLS/techprogram/paper_141811.htm
  32. Leslie, F.W. (1977), "Surface roughness effects on suction vortex formation: A laboratory simulation", J. Atmos. Sci., 34(7), 1022-1027. https://doi.org/10.1175/1520-0469(1977)034<1022:SREOSV>2.0.CO;2.
  33. Lewellen, W.S., Lewellen, D.C. and Sykes, R.I. (1997), "Large-eddy simulation of a tornado's interaction with the surface", J. Atmos. Sci., 54(5), 581-605. https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.
  34. Liu, Z. and Ishihara, T. (2015), "Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations", J. Wind Eng. Ind. Aerod., 145, 42-60. https://doi.org/10.1016/j.jweia.2015.05.008.
  35. Liu, Z. and Ishihara, T. (2016), "Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations", J. Wind Eng. Ind. Aerod., 151, 1-24. https://doi.org/10.1016/j.jweia.2016.01.006.
  36. Lombardo, F.T., Roueche, D.B. and Prevatt, D.O. (2015), "Comparison of two methods of near-surface wind speed estimation in the 22 May, 2011 Joplin, Missouri Tornado", J. Wind Eng. Ind. Aerod., 138, 87-97. https://doi.org/10.1016/j.jweia.2014.12.007.
  37. Matsui, M. and Tamura, Y. (2009), "Influence of incident flow conditions on generation of tornado-like flow", In Proc. 11th Amer. Confer. Wind Eng., Puerto Rico, U.S.A.
  38. Mishra, A.R., James, D.L. and Letchford, C.W. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96(8-9), 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.
  39. Nasir, Z. and Bitsuamlak, G.T. (2016), NDM-557: Computational Modelling of hill Effects On Tornado Like Vortex.
  40. Natarajan, D. and Hangan, H. (2012), "Large eddy simulations of translation and surface roughness effects on tornado-like vortices", J. Wind Eng. Ind. Aerod., 104, 577-584. https://doi.org/10.1016/j.jweia.2012.05.004.
  41. National Research Council of Canada (2015), National Building Code of Canada, 2015, National Research Council Canada.
  42. National Weather Service (2011), NWS Central Region Service Assessment Joplin, Missouri, Tornado - May 22, 2011.
  43. NOAA National Centers for Environmental Information (2011), State of the Climate: Tornadoes for Annual 2011, https://www.ncdc.noaa.gov/sotc/tornadoes/201113.
  44. Nolan, D.S. (2005), "A new scaling for tornado-like vortices", J. Atmos. Sci., 62(7), 2639-2645. https://doi.org/10.1175/JAS3461.1.
  45. Nolan, D.S. and Farrell, B.F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56(16), 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2.
  46. Nolan, D.S., Dahl, N.A., Bryan, G.H. and Rotunno, R. (2017), "Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence", J. Atmos. Sci., 74(5), 1573-1597. https://doi.org/10.1175/JAS-D16-0258.1.
  47. Razavi, A. and Sarkar, P.P. (2018), "Tornado-induced wind loads on a low-rise building: Influence of swirl ratio, translation speed and building parameters", Eng. Struct., 167, 1-12. https://doi.org/10.1016/j.engstruct.2018.03.020.
  48. Razavi, A., Zhang, W. and Sarkar, P.P. (2018), "Effects of ground roughness on near-surface flow field of a tornado-like vortex", Experiment. Fluids, 59(11), 1-16. https://doi.org/10.1007/s00348-018-2625-x.
  49. Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042.
  50. Refan, M., Hangan, H. and Wurman, J. (2014), "Reproducing tornadoes in laboratory using proper scaling", J. Wind Eng. Ind. Aerod., 135, 136-148. https://doi.org/10.1016/j.jweia.2014.10.008.
  51. Rhee, D.M. and Lombardo, F.T. (2018), "Improved near-surface wind speed characterization using damage patterns", J. Wind Eng. Ind. Aerod., 180, 288-297. https://doi.org/10.1016/j.jweia.2018.07.017.
  52. Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2006), "Transient loads on buildings in microburst and tornado winds", In Proc. Fourth Int. Symposium Comp. Wind Engr.(CWE2006).
  53. Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
  54. Snow, J.T. (1982), "A review of recent advances in tornado vortex dynamics", Rev. Geophys., 20(4), 953-964. https://doi.org/10.1029/RG020i004p00953.
  55. Snow, J.T. and Lund, D.E. (1997), "Considerations in exploring laboratory tornadolike vortices with a laser Doppler velocimeter", J. Atmos. Oceanic Technol., 14(3), 412-426. https://doi.org/10.1175/1520-0426(1997)014<0412:CIELTV>2.0.CO;2.
  56. Snow, J.T., Church, C.R. and Barnhart, B.J. (1980), "An investigation of the surface pressure fields beneath simulated tornado cyclones", J. Atmos. Sci., 37(5), 1013-1026. https://doi.org/10.1175/1520-0469(1980)037<1013:AIOTSP>2.0.CO;2.
  57. Tang, Z., Feng, C., Wu, L., Zuo, D. and James, D.L. (2018), "Characteristics of tornado-like vortices simulated in a largescale ward-type simulator", Boundary-layer meteorology, 166(2), 327-350. https://doi.org/10.1007/s10546-017-0305-7.
  58. Tari, P.H., Gurka, R. and Hangan, H. (2010), "Experimental investigation of tornado-like vortex dynamics with swirl ratio: The mean and turbulent flow fields", J. Wind Eng. Ind. Aerod., 98(12), 936-944. https://doi.org/10.1016/j.jweia.2010.10.001.
  59. Tepper, M. and Eggert, W.E. (1956), "Tornado proximity traces", Bull. Amer. Meteorol. Soc., 37(4), 152-159. https://doi.org/10.1175/1520-0477-37.4.152.
  60. Thampi, H., Dayal, V. and Sarkar, P.P. (2011), "Finite element analysis of interaction of tornados with a low-rise timber building", J. Wind Eng. Ind. Aerod., 99(4), 369-377. https://doi.org/10.1016/j.jweia.2011.01.004.
  61. Wakimoto, R.M., Atkins, N.T. and Wurman, J. (2011), "The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data", Month. Weather Rev., 139(7), 2233-2258. https://doi.org/10.1175/2010MWR3568.1.
  62. Wakimoto, R.M., Murphey, H.V., Dowell, D.C. and Bluestein, H.B. (2003), "The Kellerville tornado during VORTEX: Damage survey and Doppler radar analyses", Month. Weather Rev., 131(10), 2197-2221. https://doi.org/10.1175/1520-0493(2003)131<2197:TKTDVD>2.0.CO;2.
  63. Wakimoto, R.M., Stauffer, P., Lee, W.C., Atkins, N.T. and Wurman, J. (2012), "Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses", Month. Weather Rev., 140(11), 3397-3418. https://doi.org/10.1175/MWR-D-12-00036.1.
  64. Wang, J., Cao, S., Pang, W. and Cao, J. (2017), "Experimental study on effects of ground roughness on flow characteristics of tornado-like vortices", Bound. Lay. Meteorol., 162(2), 319-339. https://doi.org/10.1007/s10546-016-0201-6.
  65. Wang, J., Cao, S., Pang, W., Cao, J. and Zhao, L. (2016), "Wind-load characteristics of a cooling tower exposed to a translating tornado-like vortex", J. Wind Eng. Ind. Aerod., 158, 26-36. https://doi.org/10.1016/j.jweia.2016.09.008.
  66. Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29(6), 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.
  67. Wurman, J. (2002), "The multiple-vortex structure of a tornado", Weather Forecast., 17(3), 473-505. https://doi.org/10.1175/1520-0434(2002)017<0473:TMVSOA>2.0.CO;2.
  68. Wurman, J. and Alexander, C.R. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes", Month. Weather Rev., 133(1), 97-119. https://doi.org/10.1175/MWR2856.1.
  69. Wurman, J. and Gill, S. (2000), "Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado", Monthly weather review, 128(7), 2135-2164. https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.
  70. Wurman, J. and Samaras, T. (2003). Comparison of In-Situ Pressure and DOW Doppler Winds in a Tornado.
  71. Wurman, J., Straka, J.M. and Rasmussen, E.N. (1996), "Fine-scale Doppler radar observations of tornadoes", Sci., 272(5269), 1774-1777. https://doi.org/10.1126/science.272.5269.1774.
  72. Wurman, J., Straka, J., Rasmussen, E., Randall, M. and Zahrai, A. (1997), "Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar", J. Atmos. Oceanic Technol., 14(6), 1502-1512. https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.
  73. Yuan, F., Yan, G., Honerkamp, R., Isaac, K.M., Zhao, M. and Mao, X. (2019), "Numerical simulation of laboratory tornado simulator that can produce translating tornado-like wind flow", J. Wind Eng. Ind. Aerod., 190, 200-217. https://doi.org/10.1016/j.jweia.2019.05.001.
  74. Zhang, W. and Sarkar, P.P. (2008), "Effects of ground roughness on tornado like vortex using PIV", Proc. AAWE Workshop.
  75. Zhang, W. and Sarkar, P.P. (2012), "Near-ground tornado-like vortex structure resolved by particle image velocimetry (PIV)", Experiement Fluids, 52(2), 479-493. https://doi.org/10.1007/s00348-011-1229-5.