Acknowledgement
This work was supported by the Taishan Scholars Program of Shandong Province, China; the financial support of the key project at the central government level: The Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources, China (2060302); the National Natural Science Foundation of China, China (21904080); Science, Education and Industry Integration Innovation Pilot Project (International Cooperation Project) from Qilu University of Technology (Shandong Academy of Sciences), China (2020KJC-GH08); and the Major Innovation Project of Shandong Biotechnology Technology Innovation Center, China (2019JSWGCCXZX001).
References
- Chan HH, Hwang TL, Reddy MV, Li DT, Qian K, Bastow KF, et al. Bioactive constituents from the roots of Panax japonicus var. major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. J Nat Prod 2011;74:796-802. https://doi.org/10.1021/np100851s
- Liu F, Ma N, He C, Hu Y, Li P, Chen M, et al. Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector. J Ginseng Res 2018;42:149-57. https://doi.org/10.1016/j.jgr.2017.01.007
- Xiong Y, Chen L, Man J, Hu Y, Cui X. Chemical and bioactive comparison of Panax notoginseng root and rhizome in raw and steamed forms. J Ginseng Res 2019;43:385-93. https://doi.org/10.1016/j.jgr.2017.11.004
- Zhu D, Zhou Q, Li H, Li S, Dong Z, Li D, et al. Pharmacokinetic characteristics of steamed notoginseng by an efficient LC-MS/MS method for simultaneously quantifying twenty-three triterpenoids. J Agric Food Chem 2018;66:8187-98. https://doi.org/10.1021/acs.jafc.8b03169
- Lu YY, Song JY, Li Y, Meng YQ, Zhao MB, Jiang Y, et al. Comparative study on excretive characterization of main components in herb pair notoginseng-safflower and single herbs by LC-MS/MS. Pharmaceutics 2018;10.
- Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, et al. Analytical methods and biological activities of Panax notoginseng saponins: recent trends. J Ethnopharmacol 2019;236:443-65. https://doi.org/10.1016/j.jep.2019.02.035
- Yang Z, Zhu J, Zhang H, Fan X. Investigating chemical features of Panax notoginseng based on integrating HPLC fingerprinting and determination of multiconstituents by single reference standard. J Ginseng Res 2018;42:334-42. https://doi.org/10.1016/j.jgr.2017.04.005
- Shimizu T, Watanabe M, Fernie AR, Tohge T. Targeted LC-MS analysis for plant secondary metabolites. Methods Mol Biol 2018;1778:171-81. https://doi.org/10.1007/978-1-4939-7819-9_12
- Wolfender JL, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 2015;1382:136-64. https://doi.org/10.1016/j.chroma.2014.10.091
- Wang J-R, Yau L-F, Gao W-N, Liu Y, Yick P-W, Liu L, et al. Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng. J Agric Food Chem 2014;62:9024-34. https://doi.org/10.1021/jf502214x
- Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. Phytochem Rev 2016;15:445-88. https://doi.org/10.1007/s11101-015-9440-2
- Feenstra AD, Alexander LE, Song Z, Korte AR, Yandeau-Nelson MD, Nikolau BJ, et al. Spatial mapping and profiling of metabolite distributions during germination. Plant Physiol 2017;174:2532-48. https://doi.org/10.1104/pp.17.00652
- Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013;113:2309-42. https://doi.org/10.1021/cr3004295
- Sun C, Li Z, Ma C, Zang Q, Li J, Liu W, et al. Acetone immersion enhanced MALDI-MS imaging of small molecule metabolites in biological tissues. J Pharm Biomed Anal 2019;176:112797. https://doi.org/10.1016/j.jpba.2019.112797
- Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ. Use of mass spectrometry for imaging metabolites in plants. Plant J 2012;70:81-95. https://doi.org/10.1111/j.1365-313X.2012.04899.x
- Dong Y, Li B, Aharoni A. More than pictures: when MS imaging meets histology. Trends Plant Sci 2016;21:686-98. https://doi.org/10.1016/j.tplants.2016.04.007
- Bhandari DR, Wang Q, Friedt W, Spengler B, Gottwald S, Rompp A. High resolution mass spectrometry imaging of plant tissues: towards a plant metabolite atlas. Analyst 2015;140:7696-709. https://doi.org/10.1039/c5an01065a
- Li B, Neumann EK, Ge J, Gao W, Yang H, Li P, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant, Cell Environ 2018;41:2693-703. https://doi.org/10.1111/pce.13395
- Horn PJ, Korte AR, Neogi PB, Ebony L, Johannes F, Kerstin S, et al. Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell 2012;24:622-36. https://doi.org/10.1105/tpc.111.094581
- Woodfield HK, Sturtevant D, Borisjuk L, Munz E, Guschina IA, Chapman K, et al. Spatial and temporal mapping of key lipid species in Brassica napus seeds. Plant Physiol 2017;173:1998-2009. https://doi.org/10.1104/pp.16.01705
- Sun C, Liu W, Ma S, Zhang M, Geng Y, Wang X. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge. J Chromatogr A 2020;1614:460704. https://doi.org/10.1016/j.chroma.2019.460704
- Bin L, Camilla K, Natascha Krahl H, Kirsten JR, Rubini K, SRen B, et al. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Plant J 2013;74:1059-71. https://doi.org/10.1111/tpj.12183
- Tocci N, Gaid M, Kaftan F, Belkheir AK, Belhadj I, Liu B, et al. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytol 2018;217:1099-112. https://doi.org/10.1111/nph.14929
- Sun C, Zhang M, Dong H, Liu W, Guo L, Wang X. A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi. J Pharm Biomed Anal 2020;179:113014. https://doi.org/10.1016/j.jpba.2019.113014
- Shroff R, Vergara F, Muck A, Svatos A, Gershenzon J. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A 2008;105:6196-201. https://doi.org/10.1073/pnas.0711730105
- Manuela P, Johannes T, Darin P, Winfriede W, Wim VDE, Hans-Peter M, et al. Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 2014;26:3728. https://doi.org/10.1105/tpc.114.130211
- Porta T, Grivet C, Knochenmuss R, Varesio E, Hopfgartner G. Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry. J Mass Spectrom 2011;46:144-52. https://doi.org/10.1002/jms.1875
- Wang D, Liao P-Y, Zhu H-T, Chen K-K, Xu M, Zhang Y-J, et al. The processing of Panax notoginseng and the transformation of its saponin components. Food Chem 2012;132:1808-13. https://doi.org/10.1016/j.foodchem.2011.12.010