DOI QR코드

DOI QR Code

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration

바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구

  • Jung, Min Gie (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 정민기 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2021.09.17
  • Accepted : 2021.11.01
  • Published : 2021.12.31

Abstract

In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.

본 연구에서는 바이오가스를 이용하는 열병합 발전에서 배출되는 질소산화물을 환원제인 암모니아와 촉매를 이용하여 제거하는 선택적촉매환원법(selective catalytic reduction, SCR)에 있어서 다양한 배가스 특성에 대한 바나듐 촉매 연구를 수행하였다. 연구에 사용한 촉매는 상용촉매인 V/W/TiO2를 사용하였으며 다양한 운전조건에서 텅스텐 함량에 따라 영향을 확인하였다. NH3-SCR 실험 결과 380 ~ 450 ℃에서 95% 이상의 탈질 성능을 확인하였으며 SO2 내구성 실험 및 TGA 분석을 통해 미량의 SO2에 대한 촉매의 내구성을 확인하였다. 또한 H2-TPR 분석결과 텅스텐 함량이 높을수록 우수한 산화·환원(redox) 특성을 확인할 수 있었다. 이에 따라 열병합 발전에서 배출되는 미량의 일산화탄소에 대한 산화실험을 수행하였으며 역시 우수한 일산화탄소의 산화력을 확인할 수 있었다. NH3-DRIFTs 분석에서는 텅스텐 함량이 높을수록 Bronsted/Lewis acid sites 모두 증가하였으며 텅스텐을 촉매에 첨가 시 우수한 열적 내구성을 갖는 것으로 확인되었다. 따라서 다양한 운전조건에 따른 실험 결과, 텅스텐 함량이 높은 촉매가 바이오가스를 이용하는 열병합 발전에 적용하기 바람직하다고 판단된다.

Keywords

Acknowledgement

본 연구는 2021학년도 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. Kang, D.-W., Kang, S.-Y., Kim, T.-S., and Hur, K.-B., "Performance Evaluation of a Steam Injected Gas Turbine CHP System Using Biogas as Fuel," Korean Soc. Fluid Mach., 13(6), 57-62 (2010). https://doi.org/10.5293/KFMA.2010.13.6.057
  2. Kang, D.-W., Shin, H.-D., Kim, T.-S., Hur, K.-B., and Park, J.-K., "Operating Characteristics Study of a Small Gas/Steam Turbine Combined System Using Biogas," Korean Soc. Fluid Mach., 15(3), 51-56 (2012).
  3. Kim, K. M., "Bio-energy and Biogas Plant Technology Trend," Korean Ind. Chem. News, 11(3), 11-22 (2008).
  4. Lee, S., Park, S., Park, C., Kim, C., Lee, J., and Woo, S., "Effects of Inert Gas Composition Variations in Biogas on the Performance of a SI Engine," J. Korean Inst. Gas, 16(5), 14-20 (2012). https://doi.org/10.7842/KIGAS.2012.16.5.14
  5. Na, W.-J., and Park, H.-K., "A Study on the NOx Reduction According to the Space Velocity Variation and Binder Content of Metal foam SCR Catalyst for Cogeneration Power Plant Application," Korean Appl. Sci. Tech., 36(1), 153-164 (2019).
  6. Casagrande, L., Lietti, L., Nova, I., Forzatti, P., and Baiker, A., "SCR of NO by NH3 over TiO2-supported V2O5-MoO3 Catalysts: Reactivity and Redox Behavior," Appl. Catal. B, 22(1), 63-77 (1999). https://doi.org/10.1016/S0926-3373(99)00035-1
  7. Komatsubara, Y., Ida, S., Fujitsu, H., and Mochida, I., "Catalytic Activity of PAN-based Active Carbon Fibre (Pan-Acf) Activated with Sulphuric Acid for Reduction of Nitric Oxide with Ammonia," Fuel, 63(12), 1738-1742 (1984). https://doi.org/10.1016/0016-2361(84)90110-8
  8. Forzatti, P., "Present Status and Perspectives in de-NOx SCR Catalysis," Appl. Catal. A: Gen., 222(1-2), 221-236 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  9. Busca, G., Lietti, L., Ramis, G., and Berti, F., "Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOx by Ammonia Over Oxide Catalysts: A Review," Appl. Catal. B, 18(1-2), 1-36 (1998). https://doi.org/10.1016/S0926-3373(98)00040-X
  10. Svachula, J., Alemany, L. J., Ferlazzo, N., Forzatti, P., Tronconi, E., and Bregani, F., "Oxidation of Sulfur Dioxide to Sulfur Trioxide over Honeycomb DeNOxing Catalysts," Ind. Eng. Chem. Res., 32(5), 826-834 (1993). https://doi.org/10.1021/ie00017a009
  11. Lietti, L., Forzatti, P., and Bregani, F., "Steady-State and Transient Reactivity Study of TiO2-Supported V2O5-WO3 DeNOx Catalysts : Relevance of the Vanadium-Tungsten Interaction on the Catalytic Activity," Ind. Eng. Chem. Res., 35(11), 3884-3892 (1996). https://doi.org/10.1021/ie960158l
  12. Topsoe, N.-Y., Anstrom, M., and Dumesic, J. A., "Raman, FTIR and Theoretical Evidence for Dynamic Structural Rearrangements of Vanadia/titania DeNOx Catalysts," Catal. Lett., 76(1-2), 11-20 (2001). https://doi.org/10.1023/A:1016715823630
  13. Xiong, S., Xiao, X., Liao, Y., Dang, H., Shan, W., and Yang, S., "Global Kinetic Study of NO Reduction by NH3 over V2O5-WO3/TiO2 : Relationship between the SCR Performance and the Key Factors," Ind. Eng. Chem. Res., 54(44), 11011-11023 (2015). https://doi.org/10.1021/acs.iecr.5b03044
  14. Lietti, L., Alemany, J. L., Forzatti, P., Busca, G., Ramis, G., Giamello, E., and Bregani, F., "Reactivity of V2O5-WO3/TiO2 Catalysts in the Selective Catalytic Reduction of Nitric Oxide by Ammonia," Catal. Today, 29(1-4), 143-148 (1996). https://doi.org/10.1016/0920-5861(95)00250-2
  15. Odenbrand, C. U. I., Gabrielsson, P. L. T., Brandin, J. G. M., and Andersson, L. A. H., "Effect of Water Vapor on the Selectivity in the Reduction of Nitric Oxide with Ammonia over Vanadia Supported on Silica-Titania," Appl. Catal., 78(1), 109-122 (1991). https://doi.org/10.1016/0166-9834(91)80092-B
  16. Engweiler, J., Harf, J., and Baiker, A., "WOx/TiO2 Catalysts Prepared by Grafting of Tungsten Alkoxides: Morphological Properties and Catalytic Behavior in the Selective Reduction of NO by NH3," J. Catal., 159(2), 259-269 (1996). https://doi.org/10.1006/jcat.1996.0087
  17. Shen, J., and Hess, C., "High Surface Area VOx/TiO2/SBA-15 Model Catalysts for Ammonia SCR Prepared by Atomic Layer Deposition," Catalysts, 10(12), 1386 (2020). https://doi.org/10.3390/catal10121386
  18. Hwang, S., Jo, S.-H., Kim, J., Shin, M.-C., Chun, H. H., Park, H., and Lee, H., "Catalytic Activity of MnOx/TiO2 Catalysts Synthesized with Different Manganese Precursors for the Selective Catalytic Reduction of Nitrogen Oxides," Reac. Kinet. Mech. Cat., 117, 583-591 (2016). https://doi.org/10.1007/s11144-015-0948-7
  19. Ma, Z., Weng, D., Wu, X., and Si, Z., "Effects of WOx Modification on the Activity, Adsorption and Redox Properties of CeO2 Catalyst for NOx Reduction with Ammonia," J. Environ. Sci., 24(7), 1305-1316 (2012). https://doi.org/10.1016/S1001-0742(11)60925-X
  20. Xu, Y., Wu, X., Lin, Q., Hu, J., Ran, R., and Weng, D., "SO2 Promoted V2O5-MoO3/TiO2 Catalyst for NH3-SCR of NOx at Low Temperatures," Appl. Catal. A: Gen., 570, 42-50 (2019). https://doi.org/10.1016/j.apcata.2018.10.040
  21. Ma, Z., Wu, X., Harelind, H., Weng, D., Wang, B., and Si, Z., "NH3-SCR Reaction Mechanisms of NbOx/Ce0.75Zr0.25O2 Catalyst: DRIFTS and Kinetics Studies," J. Mol. Catal. A: Chem., 423, 172-180 (2016). https://doi.org/10.1016/j.molcata.2016.06.023
  22. Lin, Q., Li, J., Ma, L., and Hao, J., "Selective Catalytic Reduction of NO with NH3 over Mn-Fe/USY Under Lean Burn Conditions," Catalysis Today, 151(3-4), 251-256 (2010). https://doi.org/10.1016/j.cattod.2010.01.026
  23. Song, I., Lee, H., Jeon, S. W., and Kim, D. H., "Understanding the Dynamic Behavior of Acid Sites on TiO2-supported Vanadia Catalysts Via Operando DRIFTS Under SCR-relevant Conditions," J. Catal., 382, 269-279 (2020). https://doi.org/10.1016/j.jcat.2019.12.041
  24. Alemany, L. J., Berti, F., Busca, G., Ramis, G., Robba, D., and Toledo, G. P., Trombetta, M., "Characterization and Composition of Commercial V2O5-WO3-TiO2 SCR Catalysts," Appl. Catal. B, 10(4), 299-311 (1996). https://doi.org/10.1016/S0926-3373(96)00032-X
  25. Phil, H. H., Reddy, M. P., Kumar, P. A., Ju, L. K., and Hyo, J. S., "SO2 Resistant Antimony Promoted V2O5/TiO2 Catalyst for NH3-SCR of NOx at Low Temperatures," Appl. Catal. B, 78(3-4), 301-308 (2008). https://doi.org/10.1016/j.apcatb.2007.09.012
  26. Na, W.-J., Park, Y.-J., Bang, H.-S., Bang, J.-S., and Park, H.-K., "Effect of SO2 on NOx Removal Performance in Low Temperature Region over V2O5-Sb2O3/TiO2 SCR Catalyst Washcoated on the Metal Foam," Clean Technol., 22(2), 132-138 (2016). https://doi.org/10.7464/KSCT.2016.22.2.132
  27. Kobayashi, M., and Miyoshi, K., "WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3 : Influence of Preparation Method on Structural and Physico-Chemical Properties, Activity and Durability," Appl. Catal. B, 72(3-4), 253-261 (2007). https://doi.org/10.1016/j.apcatb.2006.11.007