과제정보
이 논문은 2017년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2017R1A2B3005695).
참고문헌
- Abbaszadeh, P. (2016). "Improving hydrological process modeling using optimized threshold-based wavelet de-noising technique." Water Resources Management, Vol. 30, No. 5, pp. 1701-1721. https://doi.org/10.1007/s11269-016-1246-5
- Altunkaynak, A., and Nigussie, T.A. (2017). "Monthly water consumption prediction using season algorithm and wavelet transform-based models." Journal of Water Resources Planning and Management, Vol. 143, No. 6, 04017011. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000761
- Alvisi, S., Franchini, M., and Marinelli, A. (2007). "A short-term, pattern-based model for water-demand forecasting." Journal of Hydroinformatics, Vol. 9, No. 1, pp. 39-50. https://doi.org/10.2166/hydro.2006.016
- Arthur, D., and Vassilvitskii, S. (2006). "How slow is the k-means method?." Proceedings of The Twenty-second Annual Symposium on Computational Geometry, ACM, New York, NY, U.S., pp. 144-153.
- Atsalakis, G., Minoudaki, C., Markatos, N., Stamou, A., Beltrao, J., and Panagopoulos, T. (2007). "Daily irrigation water demand prediction using adaptive neuro-fuzzy inferences systems (anfis)." Proceeding 3rd IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, WSEAS, Agios Nikolaos, Greece.
- Choi, G.S., Yu, C., Jin, R.M., Yu, S.K., and Chun, M.G. (2009). "Short-term water demand forecasting algorithm using AR model and MLP." Journal of Korean Institute of Intelligent Systems, Vol. 19, No. 5, pp.713-719. https://doi.org/10.5391/JKIIS.2009.19.5.713
- Choi, J.H., and Kim, J.B. (2018). "Analysis of water consumption data from smart water meter using machine learning and deep learning algorithms." Journal of the Institute of Electronics and Information Engineers, Vol. 55, No. 7, pp. 31-39. https://doi.org/10.5573/ieie.2018.55.7.31
- Chun, B., Lee, T., Kim, S., Kim, J., Jang, K., Chun, J., Jang, W.S., Shin, Y. (2020). "Estimation of DNN-based Soil moisture at mountainous regions." Journal of The Korean Society of Agricultural Engineers, Vol. 62, No. 5, pp. 93-103. https://doi.org/10.5389/KSAE.2020.62.5.093
- Firat, M., Turan, M.E., and Yurdusev, M.A. (2010). "Comparative analysis of neural network techniques for predicting water consumption time series." Journal of hydrology, Vol. 384, No. 1-2, pp. 46-51. https://doi.org/10.1016/j.jhydrol.2010.01.005
- Han, S.M., Hwang, G.S., Choe, S.Y., and Park, J.W. (2014). "A study on classifying algorithm of disaster recovery resources using statistical method." Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 1, pp. 49-58. https://doi.org/10.9798/KOSHAM.2014.14.1.49
- Intelligence, G.W., Yearbook, I.D., Summit, G.W., and Card, R. (2011). "Global water intelligence." Global Water Intelligence, Vol. 12, No. 10, pp. 1-72.
- Kim, D., Kim, J., Kwak, J., Necesito, I.V., Kim, J., and Kim, H.S. (2020a). "Development of water level prediction models using deep neural network in mountain wetlands." Journal of Wetlands Research, Vol. 22, No. 2, pp. 106-112. https://doi.org/10.17663/JWR.2020.22.2.106
- Kim, D., Kim, J., Wang, W., Lee, J., Jung, J., and Kim, H.S. (2020b). "Analysis of morphological characteristics of collapsed reservoirs in Korea." Journal of the Korean Society of Hazard Mitigation, Vol. 20, No. 5, pp. 207-216. https://doi.org/10.9798/kosham.2020.20.5.207
- Koo, J.Y., Yu, M.J., Kim, S.G., Shim, M.H., and Akira, K. (2005). "Estimation of long-term water demand by principal component and cluster analysis and practical application." Journal of Korean Society of Environmental Engineers, Vol. 27, No. 8, pp. 870-876.
- Kwon, H.H., Kim, M.J., and Kim, O.G. (2012). "A development of water demand forecasting model based on Wavelet transform and Support vector machine." Journal of Korea Water Resources Association, Vol. 45, No. 11, pp. 1187-1199. https://doi.org/10.3741/JKWRA.2012.45.11.1187
- Kwon, S., Kim, S., Tak, O., and Jeong, H. (2017). "A study on the clustering method of row and multiplex housing in Seoul using K-means clustering algorithm and hedonic model." Journal of Intelligence and Information Systems, Vol. 23, No. 3, pp. 95-118. https://doi.org/10.13088/JIIS.2017.23.3.095
- Kyoung, M.S., Kim, S.D., Kim, B.K. and Kim, H.S. (2007). "Construction of hydrological drought severity-area-duration curves using cluster analysis." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 3B, pp. 267-276.
- Lee, D., Kim, J., and Kim, H. (2009). "Statistical analysis on non-household unit water use for business categories." Journal of the Korean Society of Civil Engineers, Vol. 29, No. 4B, pp. 385-396.
- Nam, W.H., Kim, T., Hong, E.M., Hayes, M.J., and Svoboda, M.D. (2015). "Water supply risk assessment of agricultural reservoirs using irrigation vulnerability model and cluster analysis." Journal of the Korean Society of Agricultural Engineers, Vol. 57, No. 1, pp. 59-67. https://doi.org/10.5389/KSAE.2015.57.1.059
- Tabesh, M., and Dini, M. (2009). "Fuzzy and Neuro- fuzzy models for short-term water demand forecasting in Tehran." Iranian Journal of Science & Technology, Vol. 33, No. B1, pp. 61-77.
- Yoo, Y., Lee, M., Lee, T., Kim, S., and Kim, H.S. (2019). "Decomposition of wave components in sea level data using discrete wavelet transform." Journal of Wetlands Research, Vol. 21, No. 4, pp. 365-373. https://doi.org/10.17663/JWR.2019.21.4.365