Acknowledgement
This research was funded by the National Natural Science Foundation of China (No. 51807197 and No. 52007195) and Group Project in Hubei Province Natural Science Foundation of Innovation (No. 2018CFA008). The authors gratefully acknowledge the above financial support. We would like to thank the team members of the College of Electrical Engineering in Naval University of Engineering.
References
- Elliott, G.A.J., Covic, G.A., Kacprzak, D., et al.: A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems. IEEE Trans Magn 42(10), 3389-3391 (2006) https://doi.org/10.1109/TMAG.2006.879619
- Boys, J.T., Covic, G.A., Green, A.W.: Stability and control of inductively coupled power transfer systems. IEE Proc Electric Power Appl 147(1), 37-43 (2000) https://doi.org/10.1049/ip-epa:20000017
- Li, W., Zhao, H., Deng, J., et al.: Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV Wireless chargers. IEEE Trans Veh Technol 65(6), 1-1 (2015)
- Li, Q., Liang, Y.C.: An inductive power transfer system with a high-q resonant tank for mobile device charging. IEEE Trans Power Electron 30(11), 6203-6212 (2015) https://doi.org/10.1109/TPEL.2015.2424678
- Eom, K., Jeong, J., Lee, T.H., et al.: A wireless power transmission system for implantable devices in freely moving rodents. Med Biol Eng Comput 52(8), 639-651 (2014) https://doi.org/10.1007/s11517-014-1169-3
- Wu, X.S., Sun, P., Yang, S.Q., et al.: Review on underwater wireless power transfer technology and its application. Transact China Electrotech Soc 34(08), 1559-1568 (2019)
- Gao, J.X., Wu, X.S., Gao, W.: Review on inductive contactless power transfer technology. J Power Supply 15(02), 166-178 (2017)
- Li, S., Liu, Z., Zhao, H., et al.: Wireless power transfer by electric field resonance and its application in dynamic charging. IEEE Trans Ind Electron 63(10), 6602-6612 (2016) https://doi.org/10.1109/TIE.2016.2577625
- Li, S., Li, W., Deng, J., et al.: A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans Veh Technol 64(6), 2261-2273 (2015) https://doi.org/10.1109/TVT.2014.2347006
- Dai, X., Sun, Y.: An accurate frequency tracking method based on short current detection for inductive power transfer system. IEEE Trans Ind Electron 61(2), 776-783 (2014) https://doi.org/10.1109/TIE.2013.2257149
- Mai, R.K., Xu, D.L., Yang, M.K., et al.: Dynamic tuning method of frequency tracking based on the minimum current ratio for IPT system. Trans China Electrotech Soc 33(6), 1276-1284 (2018)
- Huang, C., Lu, Y.M.: Frequency tracking detuning control of magnetic resonant wireless power transfer system. Transact China Electrotech Soc 34(15), 3102-3111 (2019)
- Xia, C., Wang, W., Chen, G., et al.: Robust control for the relay ICPT system under external disturbance and parametric uncertainty. IEEE Trans Control Syst Technol 25(6), 2168-2175 (2017) https://doi.org/10.1109/TCST.2016.2634502
- Hu, H., Cai, T., Duan, S., et al.: An optimal variable frequency phase shift control strategy for ZVS operation within wide power range in IPT systems. IEEE Trans Power Electron 99, 1-1 (2019)
- Dai, X., Li, X., Li, Y., et al.: Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Trans Power Electron 1(99), 1-1 (2017)
- Huang, Z., Wong, S., Tse, C.K.: Comparison of basic inductive power transfer systems with linear control achieving optimized efficiency. IEEE Trans Power Electron 35(3), 3276-3286 (2020) https://doi.org/10.1109/tpel.2019.2932100
- Budhia, M., Covic, G., Boys, J.: A new IPT magnetic coupler for electric vehicle charging systems. Conference of the IEEE Industrial Electronics Society. IEEE (2010)
- Zaheer, A., Hao, H., Covic, G.A., et al.: Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging. IEEE Trans Power Electron 30(4), 1937-1955 (2015) https://doi.org/10.1109/TPEL.2014.2329693
- Aditya, K., Sood, V.K., Williamson, S.: Magnetic characterization of unsymmetrical coil pairs using archimedean spirals for wider misalignment tolerance in ipt systems. IEEE Transact Trans Electrif 454-463 (2017)
- Ren, J., Liu, Y.R., Yue, P.F.: Study on anti-misalignment inductive power transfer system based on parameter optimized method. Proceedings of the CSEE, 39(5) (2019)
- Hou, J., Chen, Q., Wong, S., et al.: Analysis and control of series/series-parallel compensated resonant converter for contactless power transfer. IEEE J Emerg Select Topics Power Electron 3(1), 124-136 (2015) https://doi.org/10.1109/JESTPE.2014.2336811
- Villa, J.L., Jesus, S., Jose, F.S.O., et al.: High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans Ind Electron 59(2), 945-951 (2012) https://doi.org/10.1109/TIE.2011.2161055
- Chen, Y., Yang, B., Kou, Z. H., et al.: Hybrid and reconfigurable IPT systems with high-misalignment tolerance for constant current and constant voltage battery charging. IEEE Trans Power Electron, 1-1 (2018)
- Su, Y.G., Wu, X.Y., Zhao, Y.M.: Parameter optimization of electric-field coupled wireless power transfer system with complementary symmetric LCC resonant network. Proc CSEE 34(14), 2874-2883 (2019)
- Ke, G., Chen, Q., Xu, L., et al.: Analysis and optimization of a double-sided S-LCC hybrid converter for high misalignment tolerance. IEEE Trans Ind Electron PP(99):1-1 (2020)
- Wang, X., Xu, J., Ma, H., Zhang, Y.: A reconstructed S-LCC Topology with dual-type outputs for inductive power transfer systems. IEEE Trans Power Electron 35(12), 12606-12611 (2020) https://doi.org/10.1109/tpel.2020.2991061
- Mai, R., Chen, Y., Zhang, Y., Yang, N., Cao, G., He, Z.: Optimization of the passive components for an S-LCC topology-based WPT system for charging massive electric bicycles. IEEE Trans Ind Electron 65(7), 5497-5508 (2018) https://doi.org/10.1109/tie.2017.2779437