DOI QR코드

DOI QR Code

원격 탐사 변화 탐지를 위한 변화 주목 기반의 덴스 샴 네트워크

Change Attention based Dense Siamese Network for Remote Sensing Change Detection

  • 투고 : 2020.11.23
  • 심사 : 2020.12.23
  • 발행 : 2021.01.30

초록

서로 다른 시간에 촬영된 같은 위치의 원격 탐사 영상에서 변화된 사항을 찾는 변화 탐지는 다양한 영역에 적용되기 때문에 매우 중요하다. 그러나 정합 오차, 건물 변위 오차, 그림자 오차 등이 오탐지를 발생시킨다. 이러한 문제점을 해결하기 위해 본 논문은 CADNet(Change Attention Dense Siamese Network)을 제안한다. CADNet은 다양한 크기의 변화 영역을 탐지하기 위해 FPN(Feature Pyramid Network)을 사용하며, 변화 영역에 주목하는 변화 주목 모듈을 적용하고, 낮은 수준 (Low-level)의 특징과 높은 수준 (High-level)의 특징을 모두 포함하고 있는 피처 맵을 변화 탐지에 사용하기 위해 DenseNet을 피처 추출기로 사용한다. CADNet의 성능을 Precision, Recall, F1 측면에서 측정하였을 때 WHU 데이터 세트에 대하여 98.44%, 98.47%, 98.46%이었고, LEVIR-CD 데이터 세트에 대해 90.72%, 91.89%, 91.30%이었다. 이 실험의 결과는 CADNet이 기존 변화 탐지 방법들보다 향상된 성능을 제공한다는 것을 보여준다.

Change detection, which finds changes in remote sensing images of the same location captured at different times, is very important because it is used in various applications. However, registration errors, building displacement errors, and shadow errors cause false positives. To solve these problems, we propose a novle deep convolutional network called CADNet (Change Attention Dense Siamese Network). CADNet uses FPN (Feature Pyramid Network) to detect multi-scale changes, applies a Change Attention Module that attends to the changes, and uses DenseNet as a feature extractor to use feature maps that contain both low-level and high-level features for change detection. CADNet performance measured from the Precision, Recall, F1 side is 98.44%, 98.47%, 98.46% for WHU datasets and 90.72%, 91.89%, 91.30% for LEVIR-CD datasets. The results of this experiment show that CADNet can offer better performance than any other traditional change detection method.

키워드

과제정보

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음. (IITP-2020-2016-0-00288)

참고문헌

  1. A. Asokan, and J. Anitha, "Change detection techniques for remote sensing applications: a survey." Earth Science Informatics, Vol.12, No.2, pp.143-160, March 2019. https://doi.org/10.1007/s12145-019-00380-5
  2. J. Liu, M. Gong, K. Qin, and P. Zhang, "A deep convolutional coupling network for change detection based on heterogeneous optical and radar images." IEEE transactions on neural networks and learning systems, Vol.29, No.3, pp.545-559, March 2016. https://doi.org/10.1109/tnnls.2016.2636227
  3. Y. Liu, Q. Ren, J. Geng, M. Ding, and J. Li, "Efficient patch-wise se- mantic segmentation for large-scale remote sensing images." Sensors, Vol.18, No.10, pp.1-16, September 2018. https://doi.org/10.1109/JSEN.2017.2772700
  4. CF. Chen, NT. Son, NB. Chang, CR. Chen, LY. Chang, M. Valdez, G. Centeno, C. A. Thompson, and J. L. Aceituno, "Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with Landsat imagery and a Markov chain model." Remote Sensing, Vol.5, No.12, pp.6408-6426, November 2013. https://doi.org/10.3390/rs5126408
  5. R. C. Daudt, B. Le Saux, A. Boulch, and Y. Gousseau, "Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks," Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, pp.2115-2118, 2018.
  6. B. Feizizadeh, T. Blaschke, D. Tiede, and M. H.R. Moghaddam, "Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes." Geomorphology, Vol.293, pp.240-254, September 2017. https://doi.org/10.1016/j.geomorph.2017.06.002
  7. J. Im, J.R. Jensen, and J.A. Tullis, "Object‐based change detection using correlation image analysis and image segmentation." International Journal of Remote Sensing, Vol.29, No.2, pp.399-423, April 2008. https://doi.org/10.1080/01431160601075582
  8. T. Blaschke, G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Q. Feitosa, F. V. D. Werff, F. V. Coillie, and D. Tiede, "Geographic object-based image analysis-towards a new paradigm." ISPRS journal of photogrammetry and remote sensing, Vol.87, pp.180-191, January 2014. https://doi.org/10.1016/j.isprsjprs.2013.09.014
  9. M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches." ISPRS Journal of photogrammetry and remote sensing, Vol.80, pp.91-106, June 2013. https://doi.org/10.1016/j.isprsjprs.2013.03.006
  10. S. J. Jung, T. H. Kim, W. H. Lee, and Y. K. Han, "Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol.37, No.6, pp.481-489, December 2019. https://doi.org/10.7848/KSGPC.2019.37.6.481
  11. A. R. Song, J. W. Choi, and Y. I. Kim, "Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol.37, No.3, pp.199-208, June 2019. https://doi.org/10.7848/KSGPC.2019.37.3.199
  12. Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, "Building Change Detection for Remote Sensing Images Using a Dual Task Constrained Deep Siamese Convolutional Network Model." arXiv preprint arXiv:1909.07726, 2019.
  13. R. C. Daudt, R. L. Saux, and A. Boulch, "Fully convolutional siamese networks for change detection." Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, pp. 4063-4067, 2018.
  14. O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation." Proceedings of the International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.
  15. M. E. A. Larabi, S. Chaib, K. Bakhtj, and M. S. Karoui, "Transfer Learning for Changes Detection in Optical Remote Sensing Imagery." Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pp.1582-1585, 2019.
  16. Y. Zhang, Y. Zhu, H. Li, S. Chen, J. Peng, and L. Zhao, "Automatic Changes Detection between Outdated Building Maps and New VHR Images Based on Pre-Trained Fully Convolutional Feature Maps." Sensors, Vol.20, No.19, pp.1-20, September 2020. https://doi.org/10.1109/JSEN.2019.2959158
  17. L. Lan, D. Wu, and M. Chi, "Multi-temporal Change Detection based on Deep Semantic Segmentation Networks," Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Shanghai, China, pp. 1-4, 2019.
  18. K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556, 2014.
  19. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, USA, pp.770-778, 2016.
  20. H. Jiang, X. Hu, K. Li, J. Zhang, J. Gong, and M. Zhang, "PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection." Remote Sensing, Vol.12, No.3, pp.1-21, February 2020.
  21. H. Chen, and S. Zhenwei, "A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection." Remote Sensing, Vol.12, No.10, pp.1-23, May 2020.
  22. X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli, "See more, know more: Unsupervised video object segmentation with co-attention siamese networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, USA, pp.3623-3632, 2019.
  23. G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely connected convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, pp.4700-4708, 2017.
  24. Wang, Feng, and David M.J. Tax. "Survey on the attention based RNN model and its applications in computer vision." arXiv preprint arXiv:1601.06823, 2016.
  25. J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, USA, pp.7132-7141, 2018.
  26. S. H. Woo, J. C. Park, J. Y. Lee, and I. S. Kwon, "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV), Munich, Germany, pp.3-19, 2018.
  27. X. Wang, R. Girshick, A. Gupta, and K. He, "Non-local neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, USA, pp.7794-7803, 2018.
  28. Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, "Change detection based on deep siamese convolutional network for optical aerial images." IEEE Geoscience and Remote Sensing Letters, Vol.14, No.10, pp.1845-1849, October 2017. https://doi.org/10.1109/LGRS.2017.2738149
  29. S. Brahimi, N. B. Aoun, A. Benoit, P. Lambert, and C. B. Amar, "Semantic segmentation using reinforced fully convolutional densenet with multiscale kernel." Multimedia Tools and Applications, Vol.78, No.15, pp.22077-22098, 2019. https://doi.org/10.1007/s11042-019-7430-x
  30. S. Ji, S. Wei, and M. Lu, "Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set." IEEE Transactions on Geoscience and Remote Sensing, Vol.57, No.1, pp.574-586, 2018. https://doi.org/10.1109/tgrs.2018.2858817
  31. J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, "Dual attention network for scene segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, USA, pp.3146-3154, 2019.
  32. T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, pp.2117-2125, 2017.
  33. H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu, "Score-CAM: Score-weighted visual explanations for convolutional neural networks." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp.24-25, 2020.