과제정보
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음. (IITP-2020-2016-0-00288)
참고문헌
- A. Asokan, and J. Anitha, "Change detection techniques for remote sensing applications: a survey." Earth Science Informatics, Vol.12, No.2, pp.143-160, March 2019. https://doi.org/10.1007/s12145-019-00380-5
- J. Liu, M. Gong, K. Qin, and P. Zhang, "A deep convolutional coupling network for change detection based on heterogeneous optical and radar images." IEEE transactions on neural networks and learning systems, Vol.29, No.3, pp.545-559, March 2016. https://doi.org/10.1109/tnnls.2016.2636227
- Y. Liu, Q. Ren, J. Geng, M. Ding, and J. Li, "Efficient patch-wise se- mantic segmentation for large-scale remote sensing images." Sensors, Vol.18, No.10, pp.1-16, September 2018. https://doi.org/10.1109/JSEN.2017.2772700
- CF. Chen, NT. Son, NB. Chang, CR. Chen, LY. Chang, M. Valdez, G. Centeno, C. A. Thompson, and J. L. Aceituno, "Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with Landsat imagery and a Markov chain model." Remote Sensing, Vol.5, No.12, pp.6408-6426, November 2013. https://doi.org/10.3390/rs5126408
- R. C. Daudt, B. Le Saux, A. Boulch, and Y. Gousseau, "Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks," Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, pp.2115-2118, 2018.
- B. Feizizadeh, T. Blaschke, D. Tiede, and M. H.R. Moghaddam, "Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes." Geomorphology, Vol.293, pp.240-254, September 2017. https://doi.org/10.1016/j.geomorph.2017.06.002
- J. Im, J.R. Jensen, and J.A. Tullis, "Object‐based change detection using correlation image analysis and image segmentation." International Journal of Remote Sensing, Vol.29, No.2, pp.399-423, April 2008. https://doi.org/10.1080/01431160601075582
- T. Blaschke, G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Q. Feitosa, F. V. D. Werff, F. V. Coillie, and D. Tiede, "Geographic object-based image analysis-towards a new paradigm." ISPRS journal of photogrammetry and remote sensing, Vol.87, pp.180-191, January 2014. https://doi.org/10.1016/j.isprsjprs.2013.09.014
- M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches." ISPRS Journal of photogrammetry and remote sensing, Vol.80, pp.91-106, June 2013. https://doi.org/10.1016/j.isprsjprs.2013.03.006
- S. J. Jung, T. H. Kim, W. H. Lee, and Y. K. Han, "Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol.37, No.6, pp.481-489, December 2019. https://doi.org/10.7848/KSGPC.2019.37.6.481
- A. R. Song, J. W. Choi, and Y. I. Kim, "Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol.37, No.3, pp.199-208, June 2019. https://doi.org/10.7848/KSGPC.2019.37.3.199
- Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, "Building Change Detection for Remote Sensing Images Using a Dual Task Constrained Deep Siamese Convolutional Network Model." arXiv preprint arXiv:1909.07726, 2019.
- R. C. Daudt, R. L. Saux, and A. Boulch, "Fully convolutional siamese networks for change detection." Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, pp. 4063-4067, 2018.
- O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation." Proceedings of the International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.
- M. E. A. Larabi, S. Chaib, K. Bakhtj, and M. S. Karoui, "Transfer Learning for Changes Detection in Optical Remote Sensing Imagery." Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pp.1582-1585, 2019.
- Y. Zhang, Y. Zhu, H. Li, S. Chen, J. Peng, and L. Zhao, "Automatic Changes Detection between Outdated Building Maps and New VHR Images Based on Pre-Trained Fully Convolutional Feature Maps." Sensors, Vol.20, No.19, pp.1-20, September 2020. https://doi.org/10.1109/JSEN.2019.2959158
- L. Lan, D. Wu, and M. Chi, "Multi-temporal Change Detection based on Deep Semantic Segmentation Networks," Proceedings of the 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Shanghai, China, pp. 1-4, 2019.
- K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556, 2014.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, USA, pp.770-778, 2016.
- H. Jiang, X. Hu, K. Li, J. Zhang, J. Gong, and M. Zhang, "PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection." Remote Sensing, Vol.12, No.3, pp.1-21, February 2020.
- H. Chen, and S. Zhenwei, "A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection." Remote Sensing, Vol.12, No.10, pp.1-23, May 2020.
- X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli, "See more, know more: Unsupervised video object segmentation with co-attention siamese networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, USA, pp.3623-3632, 2019.
- G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely connected convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, pp.4700-4708, 2017.
- Wang, Feng, and David M.J. Tax. "Survey on the attention based RNN model and its applications in computer vision." arXiv preprint arXiv:1601.06823, 2016.
- J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, USA, pp.7132-7141, 2018.
- S. H. Woo, J. C. Park, J. Y. Lee, and I. S. Kwon, "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV), Munich, Germany, pp.3-19, 2018.
- X. Wang, R. Girshick, A. Gupta, and K. He, "Non-local neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, USA, pp.7794-7803, 2018.
- Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, "Change detection based on deep siamese convolutional network for optical aerial images." IEEE Geoscience and Remote Sensing Letters, Vol.14, No.10, pp.1845-1849, October 2017. https://doi.org/10.1109/LGRS.2017.2738149
- S. Brahimi, N. B. Aoun, A. Benoit, P. Lambert, and C. B. Amar, "Semantic segmentation using reinforced fully convolutional densenet with multiscale kernel." Multimedia Tools and Applications, Vol.78, No.15, pp.22077-22098, 2019. https://doi.org/10.1007/s11042-019-7430-x
- S. Ji, S. Wei, and M. Lu, "Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set." IEEE Transactions on Geoscience and Remote Sensing, Vol.57, No.1, pp.574-586, 2018. https://doi.org/10.1109/tgrs.2018.2858817
- J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, "Dual attention network for scene segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, USA, pp.3146-3154, 2019.
- T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, pp.2117-2125, 2017.
- H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu, "Score-CAM: Score-weighted visual explanations for convolutional neural networks." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp.24-25, 2020.