DOI QR코드

DOI QR Code

Active TMD systematic design of fuzzy control and the application in high-rise buildings

  • Chen, Z.Y. (Guangdong University of Petrochem Technology, School of Science) ;
  • Jiang, Rong (Guangdong University of Petrochem Technology, School of Science) ;
  • Wang, Ruei-Yuan (Guangdong University of Petrochem Technology, School of Science) ;
  • Chen, Timothy (Division of Engineering and Applied Science, California Institute of Technology)
  • 투고 : 2021.05.23
  • 심사 : 2021.10.12
  • 발행 : 2021.12.25

초록

In this research, a neural network (NN) method was developed, which combines H-infinity and fuzzy control for the purpose of stabilization and stability analysis of nonlinear systems. The H-infinity criterion is derived from the Lyapunov fuzzy method, and it is defined as a fuzzy combination of quadratic Lyapunov functions. Based on the stability criterion, the nonlinear system is guaranteed to be stable, so it is transformed to be a linear matrix inequality (LMI) problem. Since the demo active vibration control system to the tuning of the algorithm sequence developed a controller in a manner, it could effectively improve the control performance, by reducing the wind's excitation configuration in response to increase in the cost efficiency, and the control actuator.

키워드

과제정보

The authors are grateful for the research grants given to Ruei-Yuan Wang from GDUPT talent introduction, Peoples R China under Grant No. 702-519208, and Academic Affairs in GDUPT for Goal Problem-Oriented Teaching Innovation and Practice Project Grant No. 701-234660, and the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (NO. 2021rc002) in Guangdong Province, Peoples R China No. 2021rc002 as well as to the anonymous reviewers for constructive suggestions.

참고문헌

  1. Adam, T.J. and Horst, P. (2014), "Experimental investigation of the very high cycle fatigue of GFRP (90/0)s cross-ply specimens subjected to high-frequency four-point bending", Compos. Sci. Technol., 101, 62-70. https://doi.org/10.1016/j.compscitech.2014.06.023.
  2. Adeli, H. and Jiang, X.M. (2006), "Dynamic fuzzy wavelet neural network model for structural system identification", J. Struct. Eng., ASCE, 132(1), 102-111. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(102).
  3. Backe, D., Balle, F. and Eifler, D. (2015), "Fatigue testing of CFRP in the Very High Cycle Fatigue (VHCF) regime at ultrasonic frequencies", Compos. Sci. Technol., 106, 93-99. https://doi.org/10.1016/j.compscitech.2014.10.020.
  4. Bak, B.L.V., Sarrado, C., Turon, A. and Costa, J. (2014), "Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods", Appl. Mech. Rev., 66(6), 060803. https://doi.org/10.1115/1.4027647.
  5. Battista, R.C. and Varela, W.D. (2019), "A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking", Smart Struct. Syst., 23, 467-478. https://doi.org/10.12989/sss.2019.23.5.467.
  6. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249.
  7. Cairns, D.S., Mandell, J.F., Scott, M.E. and Maccagnano, J.Z. (1999), "Design and manufacturing considerations for ply drops in composite structures", Compos. Part B, 30, 523-534. https://doi.org/10.1016/S1359-8368(98)00043-2.
  8. Carrella, A. and Ewins, D.J. (2011), "Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions", Mech. Syst. Signal Pr., 25(3), 1011-1027. https://doi.org/10.1016/j.ymssp.2010.09.011.
  9. Chawla, K.K. (2012), Fatigue and Creep, 3rd Edition, Springer, New York.
  10. Chen, T. (2019), "Hazard data analysis for underwater vehicles by submarine casualties", Mar. Technol. Soc. J., 53(6), 21-26. https://doi.org/10.4031/MTSJ.53.6.2.
  11. Chen, T. (2019), "Meteorological tidal predictions in the mekong estuary using an evolved ANN time series", Mar. Technol. Soc. J., 53(6), 27-34. https://doi.org/10.4031/MTSJ.53.6.3.
  12. Chen, T. (2019), "Modelling and verification of an automatic controller for a water treatment mixing tank", Desalination Water Treat., 159, 318-326. https://doi.org/10.5004/dwt.2019.24143.
  13. Chen, T. (2019), "Decentralized fuzzy C-Means robust algorithm for continuous systems", Aircr. Eng. Aerosp. Tec., 92(2), 222-228. https://doi.org/10.1108/AEAT-04-2019-0082.
  14. Chen, C.W. (2014), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9.
  15. Chen, C.W. (2014), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8.
  16. Chen, C.Y.J. (2020), "System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems", Smart Struct. Syst., 26(6), 797-807. https://doi.org/10.12989/sss.2020.26.6.797
  17. Chen, T. (2020), "Using evolving ANN-based algorithm models for accurate meteorological forecasting applications in Vietnam", Math. Probl. Eng. 8179652. https://doi.org/10.1155/2020/8179652.
  18. Chen, T. (2020), "A composite control for UAV systems with time delays", Aircr. Eng. Aerosp. Tec., 92(7), 949-954. https://doi.org/10.1108/AEAT-11-2019-0219.
  19. Chen, T. (2020), "PDC intelligent control-based theory for structure system dynamics", Smart Struct. Syst., 25(4), 401-408. https://doi.org/10.12989/sss.2020.25.4.401.
  20. Chen, T. (2020), "Intelligent fuzzy algorithm for nonlinear discrete-time systems", T. I. Meas. Control, 42(7), 1358-1374. https://doi.org/10.1177/0142331219891383.
  21. Chen, T. (2021), "Evolved auxiliary controller with applications to aerospace", Aircraft Eng. Aerosp. Technol., 93(4), 529-543. https://doi.org/10.1108/AEAT-12-2019-0233.
  22. Chen, T. (2021), "Evolved predictive vibration control for offshore platforms based on the Lyapunov stability criterion" Ships Offshore Struct., 16(7), 700-713. https://doi.org/10.1080/17445302.2020.1776548.
  23. Chen, T. (2021), "Smart structural stability and NN based intelligent control for nonlinear systems", Smart Struct. Syst., 27(6), 917-926. https://doi.org/10.12989/sss.2021.27.6.917.
  24. Chen, T. (2021), "Grey signal predictor and fuzzy controls for active vehicle suspension systems via Lyapunov theory", Int. J. Comput. Commun. Control, 16(3), 3991. https://doi.org/10.15837/ijccc.2021.3.3991.
  25. Chen, Z. (2021), "Apply a robust fuzzy LMI control scheme with AI algorithm to civil frame building dynamic analysis", Comput. Concrete, 28(4), 433-440. https://doi.org/10.12989/cac.2021.28.4.433.
  26. Chen, Z.Y. (2022), "Grey FNN control and robustness design for practical nonlinear systems", J. Eng. Res.. https://doi.org/10.36909/jer.11273.
  27. Chen, Z. (2021), "Smart structural control and analysis for earthquake", Struct. Eng. Mech., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131.
  28. Chen, Z. (2021), "Stochastic intelligent GA controller design for active TMD shear building", Struct. Eng. Mech., 81(1). https://doi.org/10.12989/sem.2022.81.1.000.
  29. Chen, Z.Y. (2022), "Stochastic intelligent GA-NN controller design for active TMD shear building", Struct. Eng. Mech., 81(1). https://doi.org/10.12989/sem.2022.81.1.000.
  30. Chen, Z.Y. (2022), "Grey signal predictor and FNN evolved control for practical nonlinear systems", J. Eng. Res., 33(1), 156-170. https://doi.org/10.36909/jer.11273.
  31. Chen, Z.Y. (2022), "NN model-based evolved control by DGM model for practical nonlinear systems", Exp. Syst. Appl.. https://doi.org/10.1016/j.eswa.2021.115873.
  32. Chen, Z.Y. (2022), "Systematic fuzzy navier-stokes equations for aerospace vehicles", Aircr. Eng. Aerosp. Tec.. https://doi.org/10.1108/AEAT-06-2020-0109.
  33. Claeys, J. and Van Wittenberghe, J. (2011), "Characterisation of a resonant bending fatigue test setup for pipes", Sustain. Constr. Des., 1, 424-431.
  34. Conceicao Antonio, C. (2011), "Design with composites: Material uncertainty in designing composites component", Wiley Encyclopedia Compos., 1-12. https://doi.org/10.1002/9781118097298.weoc068.
  35. Cotrell, J., Thresher, R., Lambert, S., Hughes, S. and Johnson, J, (2014), "Alliance for sustainable energy, Llc, assignee", Wind Turbine Blade Testing System Using Base Excitation, United States Patent US 8, March.
  36. Di Maio, D. and Magi, F. (2015), "Development of testing methods for endurance trials of composites components", J. Compos. Mater., 49(24), 2977-2991. https://doi.org/10.1177/0021998314558497.
  37. Eswaran, M. and Reddy, G.R. (2016), "Numerical simulation of tuned liquid tank-structure systems through sigma-transformation based fluid-structure coupled solver", Wind Struct., 23(5), 421-447. https://doi.org/10.12989/was.2016.23.5.421.
  38. Ewins, D.J. (1984), Modal Testing: Theory and Practice, Research Studies Press, Letchworth.
  39. Gu, J., Sol, H. and Van Paepegem, W. (2009), "The study of resonance fatigue testing of test beams made of composite material", Proceedings of PACAM XI.
  40. Harris, B. (2003), Fatigue in Composites: Science and Technology of The Fatigue Response of Fibre-Reinforced Plastics, Woodhead Publishing, Cambridge.
  41. Hung C.C. (2019) "Optimal fuzzy design of Chua's circuit system", Int. J. Innov. Comput. I., 15(6), 2355-2366. https://doi.org/10.24507/ijicic.15.06.2355.
  42. Just-Agosto, F., Peralta, A., Shafiq, B. and Serrano, D. (2009), "A vibration technique to obtain fatigue", Proceedings of ICCM-17 Edinburgh, Scotland, July.
  43. Katunin, A. and Fidali, M. (2012), "Self-heating of polymeric laminated composite plates under the resonant vibrations: Theoretical and experimental study", Polym. Compos., 33, 138-146. https://doi.org/10.1002/pc.22134.
  44. Lazan, B.J. (1954), "Fatigue failure under resonant vibration conditions", Technical Report March, Wright air development center.
  45. Lim, S.G. and Hong, C.S. (1989), "Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites", J. Compos. Mater., 23(7), 695-713. https://doi.org/10.1177/002199838902300704.
  46. Lu, X., Lestari, W. and Hanagud, S. (2001), "Nonlinear vibrations of a delaminated beam", J. Vib. Control, 7(6), 803-831. https://doi.org/10.1177/107754630100700603.
  47. Magi, F., Di Maio, D. and Sever, I. (2016), "Damage initiation and structural degradation through resonance vibration: Application to composite laminates in fatigue", Compos. Sci. Technol., 132, 47-56. https://doi.org/10.1016/j.compscitech.2016.06.013.
  48. Magi, F., Di Maio, D. and Sever, I. (2017), "Validation of initial crack propagation under vibration fatigue by Finite Element analysis", Int. J. Fatigue, 104, 183-119. https://doi.org/10.1016/j.ijfatigue.2017.07.003.
  49. Mandell, J.F. (1981), "Fatigue crack growth in fiber reinforced plastics", Polym. Compos., 2(1), 22-28. https://doi.org/10.1002/pc.750020106.
  50. Mori, T. (1985), "Criteria for asymptotic stability of linear time delay systems", IEEE Tran. Autom. Control, 30(2), 158-161. https://doi.org/10.1109/TAC.1985.1103901.
  51. Musial, W. and White, D. (2011), Resonance Test System, Alliance for Sustainable Energy, LLC, Golden, CO.
  52. Nairn, J.A. and Hu, S. (1992), "The initiation and growth of delaminations induced by matrix microcracks in laminated composites", Int. J. Fract., 24, 1-24. https://doi.org/10.1007/BF00013005.
  53. Pickard, A. (2012), "High cycle endurance of carbon fibre reinforced plastic: Delamination prediction and measurement", PhD Thesis, University of Bristol, UK.
  54. Preumont, A. (2011), Vibration Control of Active Structures: An Introduction, Springer.
  55. Rabiei, K., Ordokhani, Y. and Babolian, E. (2017), "The Boubaker polynomials and their application to solve fractional optimal control problems", Nonlin. Dyn., 88(2), 1013-1026. https://doi.org/10.1007/s11071-013-0841-8.
  56. Razavi, A. and Sarkar, P.P. (2018), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct., 26(3), 179-190. https://doi.org/10.12989/was.2018.26.3.179.
  57. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  58. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. http://doi.org/10.12989/scs.2018.29.2.243.
  59. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  60. Shen, W., Zhu, S., Zhu, H. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., 18(3), 449-470. https://doi.org/10.12989/sss.2016.18.3.449.
  61. Sjogren, A. and Asp, L.E. (2002), "Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading", Int. J. Fatigue, 24, 179-184. https://doi.org/10.1016/S0142-1123(01)00071-8.
  62. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161.
  63. Talreja, R. (2008), "Damage and fatigue in composites-A personal account", Compos. Sci. Technol., 68(13), 2585-2591. https://doi.org/10.1016/j.compscitech.2008.04.042.
  64. Trinh, H. and Aldeen, M. (1995), "A comment on decentralized stabilization of large scale interconnected systems with delays", IEEE Tran. Autom. Control, 40(5), 914-916. https://doi.org/10.1109/9.384229.
  65. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  66. Tsai, P.W., Pan, J.S., Liao, B.Y. and Chu, S.C. (2009), "Enhanced artificial bee colony optimization", Int. J. Innov. Comput. Inform. Control, 5(12), 5081-5092.
  67. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134.
  68. Varvani-Farahani, H. and Mivehchi, A. (2011), "Temperature dependence of stress-fatigue life data of FRP composites", Mech. Compos. Mater., 47(3), 185-192. https://doi.org/10.1007/s11029-011-9197-7.
  69. Wozney, G.P. (1962), "Resonant-vibration fatigue testing", Exp. Mech., 2, 1-8. https://doi.org/10.1007/BF02325804.
  70. Yang, J.N., Wu, J.C., Agrawal, A.K. and Li, Z. (1995), "Sliding mode control for nonlinear and hysteric structures", J. Eng. Mech., ASCE, 121(12), 1330-1339. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330).
  71. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., 23, 641-651. https://doi.org/10.12989/sss.2019.23.6.641.
  72. Zaky, M.A. (2018), "A Legendre collocation method for distributed order fractional optimal control problems", Nonlin. Dyn., 91(4), 2667-2681. https://doi.org/10.1007/s11071-013-0869-9.
  73. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439.
  74. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201.
  75. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.