과제정보
This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant no. G-111-135-1442. The authors, therefore, acknowledge with thanks DSR for technical and financial support.
참고문헌
- Al-Furjan, M.S.H., Habibi, M., rahimi, A., Chen, G., Safarpour, H. and Tounsi, A. (2020), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.
- Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and Daikh, A.A. (2019), "A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircr. Spacecr. Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189.
- Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.
- Belarbi, O.M., Houari, M.S.A., Hirane, H. and Daikh, A.A. (2020). "An efficient nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel parabolic shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.
- Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 113-126. http://doi.org/10.12989/anr.2017.5.2.113.
- Bensaid, I., Daikh, A.A. and Drai, A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3667-3688. https://doi.org/10.1177/0954406220916481.
- Cao, Y., Khorami, M., Baharom, S., Assilzadeh, H. and Dindarloo, M.H. (2021), "The effects of multi-directional functionally graded materials on the natural frequency of the doubly-curved nanoshells", Compos. Struct., 258, 113403. https://doi.org/10.1016/j.compstruct.2020.113403.
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solid Struct., 43(13), 3657-74. https://doi.org/10.1016/j.ijsolstr.2005.04.011.
- Daikh, A.A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation", Mater. Res. Express., 6, 065702. https://doi.org/10.1088/2053-1591/ab097b.
- Daikh, A.A. (2020), "Thermal buckling analysis of functionally graded sandwich cylindrical shells", Adv. Aircr. Spacecr. Sci., 7(4), 335-351. http://doi.org/10.12989/aas.2020.7.4.335.
- Daikh, A.A. and Megueni, A. (2018), "Thermal buckling analysis of functionally graded sandwich plates", J. Therm. Stress, 41(2), 139-159. https://doi.org/10.1080/01495739.2017.1393644.
- Daikh, A.A. and Zenkour, A.M., (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mat. Res. Express., 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
- Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Computat. Mech., 6, 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166.
- Daikh, A.A., Houari, M.S.A and Tounsi, A. (2019a), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express., 1, 015022. https://doi.org/10.1088/2631-8695/ab38f9.
- Daikh, A.A., Guerroudj, M., Elajrami, M. and Megueni, A. (2019b), "Thermal buckling of functionally graded sandwich beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.
- Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi. (2020a), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1752232.
- Daikh, A.A., Houari, M.S.A. and Eltaher. M.A. (2020b), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
- Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi A. (2020c), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.12989/aas.2020.7.4.335.
- Daikh, A.A., Drai, A., Houari M.S.A. and Mohamed A. Eltaher. (2020d), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36 (6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
- Daikh, A.A., Bensaid, I., Bachiri, A., Houari, M.S.A. Tounsi, A. and Merzouki, T. (2020e), "On static bending of multilayered carbon nanotube-reinforced composite plates", Comput. Concrete., 26(2), 137-150. https://doi.org/10.12989/cac.2020.26.2.137.
- Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020f), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Express., 2, 015006. https://doi.org/10.1088/2631-8695/ab638c.
- Daikh, A.A., Houari, M.S.A., Belarbi, M.O. Chakraverty, S. and Eltaher, M.A. (2021), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
- Duc, N.D., Lee, J., Nguyen-Thoi, T. and Pham, T.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032.
- Ebrahimi, F. and Barati, A.F. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., 4(3), 229-249. http://doi.org/10.12989/anr.2016.4.3.229.
- Ehyaei, J., Akbarshahi, A., and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. http://doi.org/10.12989/anr.2017.5.2.141.
- Ekinci, K. and Roukes, M. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76(6), 061101. https://doi.org/10.1063/1.1927327.
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. http://doi.org/10.12989/anr.2016.4.1.051.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-10 . https://doi.org/10.1063/1.332803.
- Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-401. https://doi.org/10.1016/j.matdes.2006.09.022.
- Esen, I., Abdelrahman, A.A. and Eltaher, Mohamed A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552/ https://doi.org/10.1016/j.compstruct.2021.113552.
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus., 136, 458. https://doi.org/10.1140/epjp/s13360-021-01419-7.
- Ferreira, A., Castro, L.M. and Bertoluzza, S. (2008), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-32. https://doi.org/10.1016/j.compstruct.2008.09.006.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid Struct., 197(14), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.
- Hamed, M.A. Abo-bakr, R.M. Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 6, 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
- Han, Y. and Elliott, J. (2007) , "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Computat. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
- Harris, P.J. (2004), "Carbon nanotubes and related structures: new materials for the twenty-first century", Am. Assoc. Phys. Teach., 72(3), 415. https://doi.org/10.1017/CBO9780511605819.
- Houari M.S.A, Tounsi, A. Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. http://doi.org/10.12989/scs.2016.22.2.257.
- Houari, M.S.A., Tounsi, A. and Beg, O.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-11. https://doi.org/10.1016/j.ijmecsci.2013.09.004.
- Hussain, M., Naeem, M. N. and Tounsi, A. (2020a), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229.
- Hussain, M., Naeem, M. N., Asghar, S., & Tounsi, A. (2020b), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307.
- Jena, S.K., Chakraverty, S. and Tornabene, F. (2019), "Dynamical behavior of nanobeam embedded in constant, linear, parabolic and sinusoidal types of Winkler elastic foundation using first-Order nonlocal strain gradient model", Mater. Res. Express., 6, 0850f2. https://doi.org/10.1088/2053-1591/ab2779.
- Liew, K.M. and Alibeigloo, A. (2020) , "Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities", Compos. Struct., 113039. https://doi.org/10.1016/j.compstruct.2020.113039.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272(15), 114231. https://doi.org/10.1016/j.compstruct.2021.114231.
- Mantari, J. and Ore, M. (2015), "Free vibration of single and sandwich laminated composite plates by using a simplified FSDT", Compos. Struct., 132, 952-959. https://doi.org/10.1016/j.compstruct.2015.06.035.
- Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Eur. J. Mech. A Solid, 37, 24-34 . https://doi.org/10.1016/j.euromechsol.2012.05.005.
- Nguyena, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mech. Eng., 326, 376-401. http://doi.org/10.1016/j.cma.2017.07.024.
- Nguyena, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method Appl. M., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.
- Nguyen-Xuan, H., Thai, C.H. and Nguyen-Thoi T. (2013), "Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory", Compos. Part B Eng., 55, 558-74. https://doi.org/10.1016/j.compositesb.2013.06.044.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
- Shahsavari, D., Karami, B. and Mansouri S. (2018), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech. A Solid, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Singh, D.B. and Singh, B.N. (2017), "New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates", Int. J. Mech. Sci., 131, 265-277. https://doi.org/10.1016/j.ijmecsci.2017.06.053.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta. Mech., 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.
- Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput. Struct., 141, 94-112. http://doi.org/10.1016/j.compstruc.2014.04.003.
- Thai, C.H., Ferreira, A., Bordas, S. and Rabczuk, T. (2013), "Nguyen-Xuan H. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory", Eur. J. Mech. A Solid, 43, 89-108. https://doi.org/10.1016/j.euromechsol.2013.09.001.
- Thai, C.H., Zenkour, A.M., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct., 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066.
- Thai, H.T., Nguyen, T.K., Vo, T.P., Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solid, 45, 211-25. https://doi.org/10.1016/j.euromechsol.2013.12.008.
- Thang, P.T., Tran, P. and Nguyen-Thoi, T. (2021), "Applying nonlocal strain gradient theory to size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoplates" Appl. Math. Modell., 93, 775-791. https://doi.org/10.1016/j.apm.2021.01.001.
- Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, MacMillan, New York, U.S.A.
- Touratier M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Vaghefi, R. (2020), "Thermo-elastoplastic analysis of functionally graded sandwich plates using a three-dimensional meshless model", Compos. Struct., 242, 112144. https://doi.org/10.1016/j.compstruct.2020.112144.
- Vuong, P.M. and Duc, N.D. (2020), "Nonlinear buckling and post-buckling behavior of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads", Aerosp. Sci. Technol., 106, 106084. https://doi.org/10.1016/j.ast.2020.106084.
- Wattanasakulpong, N., Chaikittiratana, A. (2015, "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Modell., 39, 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058
- Yang, F., Chong, A., Lam, D.C.C. and Tong, P. "Couple stress based strain gradient theory for elasticity", Int. J. Solid Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak", Adv. Nano Res., 4(4), 309-329. http://doi.org/10.12989/anr.2016.4.4.309.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snapbuckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.