DOI QR코드

DOI QR Code

Vibration analysis of boron nitride nanotubes by considering electric field and surface effect

  • Received : 2020.11.27
  • Accepted : 2021.08.30
  • Published : 2021.12.25

Abstract

In this paper, the vibrations of boron nitride nanotubes (BNNTs) are investigated by considering the electric field. To consider the size effect at nanoscale dimensions, the surface elasticity theory is exploited. The equations of motion of the BNNTs are obtained by applying Hamilton's principle, and the clamped-guided boundary conditions are also considered. The governing equations and boundary conditions are discretized using the differential quadrature method (DQM), and the natural frequency is obtained by using the eigenvalue problem solution. The results are compared with the molecular dynamic simulation in order to validate the accurate values of the surface effects. In the molecular dynamics (MD) simulation, the potential between boron and nitride atoms is considered as the Tersoff type. The Timoshenko beam model is adopted to model BNNT. The vibrations of two types of zigzag and armchair BNNTs are considered. In the result section, the effects of chirality, surface elasticity modulus, surface residual tension, surface density, electric field, length, and thickness of BNNT on natural frequency are investigated. According to the results, it should be noted that, as an efficient non-classical continuum mechanic approach, the surface elasticity theory can be used in scrutinizing the dynamic behavior of BNNTs.

Keywords

References

  1. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.
  2. Ajori, S. and Ansari, R. (2014), "Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations", Curr. Appl Phys., 14(8), 1072-1077. https://doi.org/10.1016/j.cap.2014.06.001.
  3. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020a), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput. 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  4. Al-Furjan, M., Habibi, M., Ni, J., won Jung, D. and Tounsi, A. (2020b), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput. 1-17. https://doi.org/10.1007/s00366-020-01200-x.
  5. Al-Furjan, M., Habibi, M., Won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020c), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput. 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  6. Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020d), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput. 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  7. Al-Furjan, M.S.H., Habibi, M., Shan, L. and Tounsi, A. (2021a), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  8. Al-Furjan, M., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021b), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  9. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  10. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R. and Sahmani, S. (2014), "On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory", Compos. Part B Eng., 60, 158-166. https://doi.org/10.1016/j.compositesb.2013.12.066.
  11. Ansari, R., Gholami, R., Norouzzadeh, A. and Darabi, M. (2015), "Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model", Acta Mech. Sin., 31(5), 708-719. https://doi.org/10.1007/s10409-015-0435-4.
  12. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concr., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  13. Atabakhshian, V. and Shooshtaria, A. (2020), "A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach", Adv. Nano Res., 9(3), 133-145. https://doi.org/10.12989/anr.2020.9.3.133.
  14. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  15. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concr., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  16. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  17. Beni, Y.T. (2016), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80. https://doi.org/10.1016/j.mechrescom.2016.05.011.
  18. Beni, Y.T., Zeverdejani, M.K. and Mehralian, F. (2017), "Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory", Math. Biosci., 292, 18-29. https://doi.org/10.1016/j.mbs.2017.07.002.
  19. Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  20. Blase, X., Rubio, A., Louie, S.G. and Cohen, M.L. (1994), "Stability and band gap constancy of boron nitride nanotubes", EPL, 28(5), 335-340. https://doi.org/10.1209/0295-5075/28/5/007.
  21. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concr., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  22. Bousahla, A.A., Bourada, F., Mahmoud, S., Tounsi, A., Algarni, A., Bedia, E. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concr., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  23. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  24. Chandra, A., Patra, P.K. and Bhattacharya, B. (2015), "Thermal vibration characteristics of armchair boron-nitride nanotubes", J. Appl. Phys., 118(23), 234503. https://doi.org/10.1063/1.4937559.
  25. Chandra, A., Patra, P.K. and Bhattacharya, B. (2016), "Thermomechanical buckling of boron nitride nanotubes using molecular dynamics", Mater. Res. Express. 3(2), 025005. https://doi.org/10.1088/2053-1591/3/2/025005.
  26. Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.
  27. De Rosa, M.A., Lippiello, M., Babilio, E. and Ceraldi, C. (2021), "Nonlocal vibration analysis of a nonuniform carbon nanotube with elastic constraints and an attached mass", Materials, 14(13), 3445. https://doi.org/10.3390/ma14133445.
  28. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  29. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concr., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  30. Ebrahimi, F. and Daman, M. (2016), "Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams", J. Eng., 9848343. https://doi.org/10.1155/2016/9848343.
  31. Ebrahimi, N. and Beni, Y.T. (2016), "Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory", Steel Compos. Struct., 22(6), 1301-1336. https://doi.org/10.12989/scs.2016.22.6.1301.
  32. Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://10.22055/JACM.2019.27857.1439.
  33. Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.
  34. Ghobadi, A., Beni, Y.T. and Zur, K.K. (2021a), "Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon", Compos. Struct., 259, 113220. https://doi.org/10.1016/j.compstruct.2020.113220.
  35. Ghobadi, A., Golestanian, H., Beni, Y.T. and Zur, K.K. (2021b), "On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nanoplate", Commun. Nonlinear Sci. Numer. Simul., 95, 105585. https://doi.org/10.1016/j.cnsns.2020.105585.
  36. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Archive for Rational Mechanics and Analysis, 57(4), 291-323. https://doi.org/10.1007/BF00261375.
  37. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.
  38. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40(8), 2791-2799. http://doi.org/10.1016/j.physe.2007.12.021.
  39. Hosseini-Hashemi, S. and Ilkhani, M.R. (2016), "Exact solution for free vibrations of spinning nanotube based on nonlocal first order shear deformation shell theory", Compos. Struct., 157, 1-11. https://doi.org/10.1016/j.compstruct.2016.08.019.
  40. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput. 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  41. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  42. Kang, J.H., Sauti, G., Park, C., Yamakov, V.I., Wise, K.E., Lowther, S.E., Fay, C.C., Thibeault, S.A. and Bryant, R.G. (2015), "Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes", Acs Nano, 9(12), 11942-11950. https://doi.org/10.1021/acsnano.5b04526.
  43. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  44. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41(11), 1-17. https://doi.org/10.1007/s40430-019-1996-0.
  45. Karimipour, I., Beni, Y.T. and Zeighampour, H. (2020), "Vibration and dynamic behavior of electrostatic size-dependent microplates", J. Braz. Soc. Mech. Sci. Eng., 42(8), 1-22. https://doi.org/10.1007/s40430-020-02490-4.
  46. Karimipour, I., Beni, Y.T. and Akbarzadeh, A.H. (2019), "Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates", Commun. Nonlinear Sci. Numer. Simul., 78, 104856. https://doi.org/10.1016/j.cnsns.2019.104856.
  47. Karimipour, I., Beni, Y.T., Arvin, H. and Akbarzadeh, A. (2021), "Dynamic wave propagation in micro-torus structures: Implementing a 3D physically realistic theory", Thin Wall Struct., 165, 107995. https://doi.org/10.1016/j.tws.2021.107995.
  48. Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. https://doi.org/10.12989/anr.2020.9.3.157.
  49. Kim, J.H., Pham, T.V., Hwang, J.H., Kim, C.S. and Kim, M.J. (2018), "Boron nitride nanotubes: synthesis and applications", Nano Converg., 5(1), 1-13. https://doi.org/10.1186/s40580-018-0149-y.
  50. Lee, R.S., Gavillet, J., Chapelle, M.L.d.l., Loiseau, A., Cochon, J.L., Pigache, D., Thibault, J. and Willaime, F. (2001), "Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration", Phys. Rev. B., 64(12), 121405. https://doi.org/10.1103/PhysRevB.64.121405.
  51. Lopez-Suarez, M., Abadal, G., Gammaitoni, L. and Rurali, R. (2015), "Noise energy harvesting in buckled BN nanoribbons from molecular dynamics", Nano Energy, 15 329-334. https://doi.org/10.1016/j.nanoen.2015.04.021.
  52. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  53. Meleshko, V. and Tokovyy, Y.V. (2013), "Equilibrium of an elastic finite cylinder under axisymmetric discontinuous normal loadings", J. Eng. Math., 78(1), 143-166. https://doi.org/10.1007/s10665-011-9524-y.
  54. Nakhmanson, S.M., Calzolari, A., Meunier, V., Bernholc, J. and Nardelli, M.B. (2003), "Spontaneous polarization and piezoelectricity in boron nitride nanotubes", Phys. Rev. B, 67(23), 235406. https://doi.org/10.1103/PhysRevB.67.235406.
  55. Ohba, N., Miwa, K., Nagasako, N. and Fukumoto, A. (2001), "First-principles study on structural, dielectric, and dynamical properties for three BN polytypes", Phys. Rev. B, 63(11), 115207. https://doi.org/10.1103/PhysRevB.63.115207.
  56. Ouakad, H.M., Sedighi, H.M. and Al-Qahtani, H.M. (2020), "Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects", Adv. Nano Res., 8(3), 245-254. https://doi.org/10.12989/anr.2020.8.3.245.
  57. Pishkenari, H.N., Afsharmanesh, B. and Akbari, E. (2015), "Surface elasticity and size effect on the vibrational behavior of silicon nanoresonators", Curr. Appl. Phys., 15(11), 1389-1396. https://doi.org/10.1016/j.cap.2015.08.002.
  58. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695.
  59. Rubio, A., Corkill, J.L. and Cohen, M.L. (1994), "Theory of graphitic boron nitride nanotubes", Phys. Rev. B, 49(7), 5081. https://doi.org/10.1103/PhysRevB.49.5081.
  60. Sahmani, S., Aghdam, M. and Bahrami, M. (2016), "Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions", Meccanica, 1-24. https://doi.org/10.1007/s11012-016-0465-4.
  61. Sai, N. and Mele, E. (2003), "Microscopic theory for nanotube piezoelectricity", Phys. Rev. B. 68(24), 241405. https://doi.org/10.1103/PhysRevB.68.241405.
  62. Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mech., 227(6), 1575-1591. https://doi.org/10.1007/s00707-016-1562-0.
  63. Shariati, A., Ebrahimi, F., Karimiasl, M., Selvamani, R. and Toghroli, A. (2020a), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9(3), 183-191. https://doi.org/10.12989/anr.2020.9.3.183.
  64. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020b), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01024-9.
  65. Shojaeian, M. and Beni, Y.T. (2015), "Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges", Sensot. Actuat. A Phys., 232, 49-62. https://doi.org/10.1016/j.sna.2015.04.025.
  66. Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer.
  67. Streitz, F.H., Cammarata, R.C. and Sieradzki, K. (1994), "Surfaces-tress effects on elastic properties. I. Thin metal films", Phys. Rev. B, 49(15), 10699-10706. https://doi.org/10.1103/PhysRevB.49.10699.
  68. Tadi Beni, Y. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intell. Mater. Syst. Struct., 27(16), 2199-2215. https://doi.org/10.1177/1045389X15624798.
  69. Thibeault, S.A., Fay, C.C., Sauti, G., Kang, J.H. and Park, C. (2020), Radiation shielding materials containing hydrogen, boron and nitrogen, Google Patents.
  70. Tiano, A.L., Park, C., Lee, J.W., Luong, H.H., Gibbons, L.J., Chu, S.H., Applin, S., Gnoffo, P., Lowther, S. and Kim, H.J. (2014). "Boron nitride nanotube: Synthesis and applications", Procedding of Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 9060, 906006, California, U.S.A. https://doi.org/10.1117/12.2045396.
  71. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069.
  72. Verma, V., Jindal, V. and Dharamvir, K. (2007), "Elastic moduli of a boron nitride nanotube", Nanotechnology, 18(43), 435711. https://doi.org/10.1088/0957-4484/18/43/435711.
  73. Xu, X.J., Deng, Z.C., Zhang, K. and Meng, J.M. (2016), "Surface effects on the bending, buckling and free vibration analysis of magneto-electro-elastic beams", Acta Mech., 227(6), 1557-1573. https://doi.org/10.1007/s00707-016-1568-7.
  74. Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
  75. Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004.
  76. Zeighampour, H. and Tadi Beni, Y. (2014), "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory", Physica E, 61, 28-39. https://doi.org/10.1016/j.physe.2014.03.011.
  77. Zeighampour, H. and Beni, Y.T. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Math. Model. 39(18), 5354-5369. https://doi.org/10.1016/j.apm.2015.01.015.
  78. Zeighampour, H., Beni, Y.T. and Mehralian, F. (2015), "A shear deformable conical shell formulation in the framework of couple stress theory", Acta Mech., 226(8), 2607-2629. https://doi.org/10.1007/s00707-015-1318-2.
  79. Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory", Microfluid. Nanofluid., 21(5), 85. https://doi.org/10.1007/s10404-017-1918-3.
  80. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117.
  81. Zeverdejani, M.K. and Beni, Y.T. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites", Adv. Nano Res., 8(2), 103-114. https://doi.org/10.12989/anr.2020.8.2.103.
  82. Zhang, J. and Wang, C. (2014), "Effect of the electric field on the mechanical properties of gallium nitride nanowires", EPL, 105(2), 28004. https://doi.org/10.1209/0295-5075/105/28004.
  83. Zhang, J., Wang, C. and Adhikari, S. (2013a), "Fracture and buckling of piezoelectric nanowires subject to an electric field", J. Appl. Phys., 114(17), 174306. https://doi.org/10.1063/1.4829277.
  84. Zhang, J., Wang, C. and Adhikari, S. (2013b), "Molecular structure-dependent deformations in boron nitride nanostructures subject to an electrical field", J. Phys. D Appl. Phys., 46(23), 235303. https://doi.org/10.1088/0022-3727/46/23/235303.
  85. Zhen, Y.X. (2017), "Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects", Physica E, 86, 275-279. https://doi.org/10.1016/j.physe.2016.10.037.
  86. Zhi, C., Bando, Y., Tang, C., Honda, S., Kuwahara, H. and Golberg, D. (2006), "Boron nitride nanotubes/polystyrene composites", J. Mater. Res., 21(11), 2794-2800. https://doi.org/10.1557/jmr.2006.0340.
  87. Zhu, C.S., Fang, X.Q., Liu, J.X. and Li, H.Y. (2017), "Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells", Eur. J. Mech. A. Solid., 66, 423-432. https://doi.org/10.1016/j.euromechsol.2017.08.001.
  88. Zong, Z. and Zhang, Y. (2009), Advanced Differential Quadrature Methods, CRC Press.