Acknowledgement
The authors, would like to acknowledge the researchers whose research findings we have referred to in this paper.
References
- Al-Gemeel, A.N., Zhuge, Y. and Youssf, O. (2018), "Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite", Constr. Build. Mater., 171, 858-870. https://doi.org/10.1016/j.conbuildmat.2018.03.172.
- Balendran, R.V., Zhou, F.P., Nadeem, A. and Leung, A.Y.T. (2002), "Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete", Build. Environ., 37(12), 1361-1367. https://doi.org/10.1016/S0360-1323(01)00109-3.
- Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane S. (2016), "Flexural behaviour of steel fibrereinforced concrete under cyclic loading", Constr. Build. Mater., 126, 253-262. http://doi.org/10.1016/j.conbuildmat.2016.09.035.
- Chopra, P., Sharma, R.K., Kumar, M. and Chopra, T., (2018), "Comparison of machine learning techniques for the prediction of compressive strength of concrete", Adv. Civil Eng., 5481705. http://doi.org/10.1155/2018/5481705.2.
- Dawood, E.T. and Ramli, M. (2011), "High strength characteristics of cement mortar reinforced with hybrid fibres", Constr. Build. Mater., 25(2011), 2240-2247. http://doi.org/10.1016/j.conbuildmat.2010.11.008.
- Deepa, C., Sathiyakumari, K. and Preamsudha, V. (2010), "Prediction of the compressive strength of high performance concrete mix using tree based modeling", Int. J. Comput. Appl., 6(5), 18-24. https://doi.org/10.5120/1076-1406
- Fladra, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steel fiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1), 49-70. http://doi.org/10.12989/cme.2019.1.1.049.
- Ganesan, N., Abraham, R. and Raj, S.D. (2015), "Durability characteristics of steel fibre reinforced geopolymer concrete", Constr. Build. Mater., 93(2015), 471-476. http://doi.org/10.1016/j.conbuildmat.2015.06.014.
- Goh, A.T.C. and Goh, S.H. (2007), "Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.
- Goldberg, Y. (2017), "Neural network methods for natural language processing", Synth. Lecture Human Lang. Technol., 10(1), 1-309. http://doi.org/10.2200/S00762ED1V01Y201703HLT037.
- Guo, Y.C., Zhang, J.H., Chen, G.M. and Xie, Z.H. (2014), "Compressive behavior of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures", J. Clean. Prod., 72(2014), 193-203. http://doi.org/10.1016/j.jclepro.2014.02.036.
- Han, Q., Gui, C., Xu, J. and Lacidogna, G. (2019), "A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm", Constr. Build. Mater., 226, 734-742. http://doi.org/10.1016/j.conbuildmat.2019.07.315.
- Haddadou, N, Chaid, R. and Ghernouti, Y. (2015), "Experimental study on steel fibre reinforced selfcompacting concrete incorporating high volume of marble powder", Eur. J. Environ. Civil Eng., 19(1), 48-64. https://doi.org/10.1080/19648189.2014.929537.
- Jian-he, X., Yong-chang, G., Li-sha, L. and Zhi-hong, X. (2015), "Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber", Constr. Build. Mater., 79, 263-272. http://doi.org/10.1016/j.conbuildmat.2015.01.036.
- Khater, H.M., El Nagar, A.M., Ezzat, M. and Lottfy, M. (2020), "Fabrication of sustainable geo-polymer mortar incorporating granite waste", Compos. Mater. Eng., 2(1), 1-12. https://doi.org/10.12989/cme.2020.2.1.001.
- Koksal, F., Sahin, Y., Gencel, O. and Yigit, I. (2013), "Fracture energy-based optimisation of steel fibre reinforced concretes", Eng. Fract. Mech., 107, 29-37. http://doi.org/10.1016/j.engfracmech.2013.04.018.
- Laghari, R.A., Li, J., Laghari, A.A. and Wang, S. (2019), "A review on application of soft computing techniques in machining of particle reinforcement metal matrix composites", Arch. Computat. Method Eng., 27(5), 1363-1377. https://doi.org/10.1007/s11831-019-09340-0.
- Lau, A. and Anson, M. (2006), "Effect of high temperatures on high performance steel fibre reinforced concrete", Cement Concr. Res., 36(9), 1698-1707. https://doi.org/10.1016/j.cemconres.2006.03.024.
- Lee, N.J., Lai, G.S., Lau, W.J. and Ismail, A.F. (2020), "Effect of poly(ethylene glycol) on the properties of mixed matrix membranes for improved filtration of highly concentrated oily solution", Compos. Mater. Eng., 2(1), 43-51. http://doi.org/10.12989/cme.2020.2.1.043.
- Manoharan, S.V. and Anandan, S. (2014), "Steel fibre reinforcing characteristics on the size reduction of fly ash based concrete", Adv. Civil Eng., 217473. https://doi.org/10.1155/2014/217473.
- Nalanth, N., Venkatesan, P.V, and Ravikumar, M.S. (2014), "Evaluation of the fresh and hardened properties of steel fibre reinforced self-compacting concrete using recycled aggregates as a replacement material" Adv. Civil Eng., 671547. https://doi.org/10.1155/2014/671547.
- Nataraja, M.C., Nagaraj, T.S. and Basavaraja, S.B., (2005), "Reproportioning of steel fibre reinforced concrete mixes and their impact resistance", Cement Concrete Res., 35(12), 2350-2359. http://doi.org/10.1016/j.cemconres.2005.06.011.
- Nhu, V.H., Shahabi, H., Nohani, E., Shirzadi, A., Ansari, N.A., Bahrami, S., Miraki, S., Geertsema, M. and Nguyen, H. (2020), "Daily water level prediction of zrebar lake(Iran): A comparison between M5P, random forest, random tree and reduced error pruning trees algorithms", Int. J. Geo-Inform., 9(8), 479. http://doi.org/10.3390/ijgi9080479.
- Quinlan, J.R. (1992), "Learning with continuous classes", Proceeding of the 5th Australian Joint Conference on Artificial Intelligence, 92, 343-34. https://doi.org/10.1142/9789814536271.
- Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041
- Rasmussen, C.E. and Williams, C.K.I. (2006), Gaussian Processes for Machine Learning, The MIT Press, Cambridge, U.K.
- Salcedo-Sanz, S., Rojo-Alvarez, J.L., Martinez-Ramon, M. and Camps-Valls, G. (2014), "Support vector machines in engineering: An overview", WIREs Data Min. Knowl. Discov., 4(3), 234-267. http://doi.org/10.1002/widm.1125.
- Sepahvand, A., Singh, B., Sihag, P., Samani, A.N., Ahmadi, H. and Nia, S.F. (2019), "Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR)", ISH J. Hydraul. Eng., 1-12. http://doi.org/ 10.1080/09715010.2019.1595185.
- Sharma, N., Thakur, M.S., Goel, P.L. and Sihag, P. (2020), "A review: Sustainable compressive strength properties of concrete mix with replacement by marble powder", J. Achiev. Mater. Manuf., 98(1), 11-23. http://doi.org/10.5604/01.3001.0014.0813.
- Sharma, N., Thakur, M.S., Vambol, V., Vambol, S. (2021), Predicting Compressive Strength of Concrete Matrix Using Engineered Cementitious Composites: A Comparative Study between ANN and RF Models, in Computational Technologies in Materials Science, CRC Press.
- Siddique, R, Singh, M, and Jain, M. (2020), "Recycling copper slag in steel fibre concrete for sustainable construction", J. Clean Prod., 271, 122559. https://doi.org/10.1016/j.jclepro.2020.122559.
- Singh, B., Sihag, P., Tomar, A. and Sehgad, A. (2019), "Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches", J. Mater. Eng. Struct., 6(2019), 583-592.
- Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24(2010), 709-718. http://doi.org/10.1016/j.conbuildmat.2009.10.037.
- Soulioti, D.V., Barkoula, N.M., Paipetis, A. and Matikas, T.E. (2011), "Effects of fibre geometry and volume fraction on the flexural behavior of steel-fibre reinforced concrete", Strain, 47, 535-541. http://doi.org/10.1111/j.1475-1305.2009.00652.x.
- Sounthararajan, V.M. and Sivakumar, A. (2013), "Accelerated properties of steel fibre reinforced concrete containing finer sand", ARPN J. Eng. Appl. Sci., 8(1), 57-63.
- Suthar, M. (2019), "Applying several machine learning approaches for the prediction of unconfined compressive strength of stabilized pond ashes", Neural Comput. Appl., 32(13), 9019-9028. https://doi.org/10.1007/s00521-019-04411-6.
- Tadepalli, P.R., Mo, Y.L. and Hsu, T.T.C. (2015), "Mechanical property of steel fibre concrete", Magazine Concrete Res., 65(8), 462-474. https://doi.org/10.1680/macr.12.00077.
- Thakur, M.S., Pandhiani, S.M., Kashyap, V., Upadhya, A. and Sihag, P. (2021), "Predicting bond strength of FRP bars in concrete using soft computing techniques", Arab. J. Sci. Eng., 46(5), 49510-4969. https://doi.org/10.1007/s13369-020-05314-8.
- Upadhya, A., Thakur, M.S., Sharma, N. and Sihag, P. (2021), "Assessment of soft computing-based techniques for the prediction of marshall stability of asphalt concrete reinforced with glass fiber", Int. J. Pavement Res. Technol., 1-20. https://doi.org/10.1007/s42947-021-00094-2.
- Vakharia, V. and Gujar, R., (2019), "Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques", Constr. Build. Mater, 225, 292-301. https://doi.org/10.1016/j.conbuildmat.2019.07.224.
- Vapnik, V.N. (1995), "The nature of statistical learning theory", Springer, New York., U.S.A.
- Wang, Y. and Witten, I.H. (1996), "Induction of model trees for predicting continuous classes", University of Waikato, Department of Computer Science, Hamilton, New Zealand.
- Wu, Z., Shi, C., He, W. and Wua, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. http://doi.org/10.1016/j.conbuildmat.2015.11.028.
- Zhang, J., Wang, Q. and Wang, Z. (2017), "Properties of polyvinyl alcohol-steel hybrid fiber-reinforced composite with high-strength cement matrix", J. Mater. Civil Eng., 29(7), 04017026. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001868.
- Zhang, L., Zhao, J., Fan, C. and Wang, Z. (2020), "Effect of surface shape and content of steel fiber on mechanical properties of concrete", Adv. Civil Eng., 8834507. https://doi.org/10.1155/2020/8834507.
- Zongjin, L. (2011), Advanced Concrete Technology, John Wiley and Sons.