DOI QR코드

DOI QR Code

Micro-CT image-based reconstruction algorithm for multiscale modeling of Sheet Molding Compound (SMC) composites with experimental validation

  • Lim, Hyoung Jun (Department of Aerospace Engineering, Seoul National University) ;
  • Choi, Hoil (Department of Aerospace Engineering, Seoul National University) ;
  • Yoon, Sang-Jae (Research & Development Division, Hyundai Motor Company) ;
  • Lim, Sang Won (Research & Development Division, Hyundai Motor Company) ;
  • Choi, Chi-Hoon (Research & Development Division, Hyundai Motor Company) ;
  • Yun, Gun Jin (Department of Aerospace Engineering, Seoul National University)
  • Received : 2021.07.29
  • Accepted : 2021.12.17
  • Published : 2021.08.25

Abstract

This paper presents a multiscale modeling method for sheet molding compound (SMC) composites through a novel bundle packing reconstruction algorithm based on a micro-CT (Computed Tomography) image processing. Due to the complex flow pattern during the compression molding process, the SMC composites show a spatially varying orientation and overlapping of fiber bundles. Therefore, significant inhomogeneity and anisotropy are commonly observed and pose a tremendous challenge to predicting SMC composites' properties. For high-fidelity modeling of the SMC composites, the statistical distributions for the fiber orientation and local volume fraction are characterized from micro-CT images of real SMC composites. After that, a novel bundle packing reconstruction algorithm for a high-fidelity SMC model is proposed by considering the statistical distributions. A method for evaluating specimen level's strength and stiffness is also proposed from a set of high-fidelity SMC models. Finally, the proposed multiscale modeling methodology is experimentally validated through a tensile test.

Keywords

Acknowledgement

The research was supported by Hyundai Motors Co. Ltd (No. 0498-20200036) and the Institute of Engineering at Seoul National University. The authors are grateful for their support.

References

  1. Abrams, L.M. and Castro, J.M. (2003), "Predicting molding forces during sheet molding compound (SMC) compression molding. I: Model development", Polym. Compos., 24(3), 291-303. https://doi.org/10.1002/pc.10029.
  2. Advani, S.G. and Tucker, C.L. (1987), "The use of tensors to describe and predict fiber orientation in short fiber composites", J. Rheol., 31(8), 751-784. https://doi.org/10.1122/1.549945.
  3. Anagnostou, D., Chatzigeorgiou, G., Chemisky, Y. and Meraghni, F. (2018), "Hierarchical micromechanical modeling of the viscoelastic behavior coupled to damage in SMC and SMC-hybrid composites", Compos. Part B Eng., 151, 8-24. https://doi.org/10.1016/j.compositesb.2018.05.053.
  4. Cabrera-Rios, M. and Castro, J.M. (2006), "An economical way of using carbon fibers in sheet molding compound compression molding for automotive applications", Polym. Compos., 27(6), 718-722. https://doi.org/10.1002/pc.20257.
  5. Chen, Z., Huang, T., Shao, Y., Li, Y., Xu, H., Avery, K., Zeng, D., Chen, W. and Su, X. (2018), "Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction", Compos. Struct., 188, 25-38. https://doi.org/10.1016/j.compstruct.2017.12.039.
  6. Choi, H.I., Zhu, F.Y., Lim, H. and Yun, G.J. (2019), "Multiscale stochastic computational homogenization of the thermomechanical properties of woven Cf/SiCm composites", Compos. Part B Eng., 177, 107375. https://doi.org/10.1016/j.compositesb.2019.107375.
  7. Doghri, I., Brassart, L., Adam, L. and Gerard, J.S. (2011), "A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites", Int. J. Plasticity, 27(3), 352-371. https://doi.org/10.1016/j.ijplas.2010.06.004.
  8. Doghri, I. and Ouaar, A. (2003), "Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms", Int. J. Solid Struct., 40(7), 1681-1712. https://doi.org/10.1016/S0020-7683(03)00013-1.
  9. Eshelby, J.D. and Peierls, R.E. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376-396. https://doi.org/10.1098/rspa.1957.0133.
  10. Feder, J. (1980), "Random sequential adsorption", J. Theor. Biol., 87(2), 237-254. https://doi.org/10.1016/0022-5193(80)90358-6.
  11. Feraboli, P., Peitso, E., Deleo, F., Cleveland, T. and Stickler, P.B. (2009), "Characterization of prepreg-based discontinuous carbon fiber/epoxy systems", J. Reinf. Plast. Comp., 28(10), 1191-1214. https://doi.org/10.1177/0731684408088883.
  12. Fladr, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steel fiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1), 49-70. https://doi.org/10.12989/cme.2019.1.1.049.
  13. Gorthofer, J., Meyer, N., Pallicity, T.D., Schottl, L., Trauth, A., Schemmann, M., Hohberg, M., Pinter, P., Elsner, P., Henning, F., Hrymak, A., Seelig, T., Weidenmann, K., Karger, L. and Bohlke, T. (2019), "Virtual process chain of sheet molding compound: Development, validation and perspectives", Compos. Part B Eng., 169, 133-147. https://doi.org/10.1016/j.compositesb.2019.04.001.
  14. Gorthofer, J., Schneider, M., Ospald, F., Hrymak, A. and Bohlke, T. (2020), "Computational homogenization of sheet molding compound composites based on high fidelity representative volume elements", Computat. Mater. Sci., 174, 109456. https://doi.org/10.1016/j.commatsci.2019.109456.
  15. Jeong, S., Zhu, F., Lim, H., Kim, Y. and Yun, G.J. (2019), "3D stochastic computational homogenization model for carbon fiber reinforced CNT/epoxy composites with spatially random properties", Compos. Struct., 207, 858-870. https://doi.org/10.1016/j.compstruct.2018.09.025.
  16. Kim, Y. and Yun, G.J. (2018), "Effects of microstructure morphology on stress in mechanoluminescent particles: Micro CT image-based 3D finite element analyses", Compos. Part A Appl. S., 114, 338-351. https://doi.org/10.1016/j.compositesa.2018.08.033.
  17. Kravchenko, S.G., Sommer, D.E., Denos, B.R., Favaloro, A.J., Tow, C.M., Avery, W.B. and Pipes, R.B. (2019), "Tensile properties of a stochastic prepreg platelet molded composite", Compos. Part A Appl. S., 124, 105507. https://doi.org/10.1016/j.compositesa.2019.105507.
  18. Li, Y., Chen, Z., Su, L., Chen, W., Jin, X. and Xu, H. (2018), "Stochastic reconstruction and microstructure modeling of SMC chopped fiber composites", Compos. Struct., 200, 153-164. https://doi.org/10.1016/j.compstruct.2018.05.079.
  19. Lim, H., Choi, H., Lee, M.J. and Yun, G.J. (2020), "Elasto-plastic damage modeling and characterization of 3D needle-punched Cf/SiCm composite materials", Ceram. Int., 46(10), 16918-16931. https://doi.org/10.1016/j.ceramint.2020.03.271.
  20. Lim, H.J., Choi, H., Lee, M.J. and Yun, G.J. (2021), "An efficient multi-scale model for needle-punched Cf/SiCm composite materials with experimental validation", Compos. Part B Eng., 217, 108890. https://doi.org/10.1016/j.compositesb.2021.108890.
  21. Lim, H.J., Choi, H., Zhu, F.Y., Kerekes, T.W. and Yun, G.J. (2020), "Multiscale damage plasticity modeling and inverse characterization for particulate composites", Mech. Mater., 149, 103564. https://doi.org/10.1016/j.mechmat.2020.103564.
  22. Lu, J., Khot, S. and Wool, R.P. (2005), "New sheet molding compound resins from soybean oil. I. Synthesis and characterization", Polymer, 46(1), 71-80. https://doi.org/10.1016/j.polymer.2004.10.060.
  23. Luchoo, R., Harper, L.T., Warrior, N.A. and Dodworth, A. (2011), "Three-dimensional numerical modelling of discontinuous fibre composite architectures", Plast. Rubber Compos., 40(6-7), 356-362. https://doi.org/10.1179/1743289810Y.0000000023.
  24. Martulli, L.M., Alves, M., Pimenta, S., Hine, P.J., Kerschbaum, M., Lomov, S.V. and Swolfs, Y. (2018). "Predictions of carbon fibre sheet moulding compound (CF-SMC) mechanical properties based on local fibre orientation", Proceedings ECCM 18, 18th European Conference on Composite Materials, Athens, Greece, June.
  25. Martulli, L.M., Muyshondt, L., Kerschbaum, M., Pimenta, S., Lomov, S.V. and Swolfs, Y. (2019), "Carbon fibre sheet moulding compounds with high in-mould flow: Linking morphology to tensile and compressive properties", Compos. Part A Appl. S., 126, 105600. https://doi.org/10.1016/j.compositesa.2019.105600.
  26. Meyer, N., Schottl, L., Bretz, L., Hrymak, A.N. and Karger, L. (2020), "Direct bundle simulation approach for the compression molding process of sheet molding compound", Compos. Part A Appl. S., 132, 105809. https://doi.org/10.1016/j.compositesa.2020.105809.
  27. Miletic, M., Kumar, L.M., Arns, J.Y., Agarwal, A., Foster, S.J., Arns, C. and Peric, D. (2020), "Gradient-based fibre detection method on 3D micro-CT tomographic image for defining fibre orientation bias in ultra-highperformance concrete", Cement Concrete Res., 129, 105962. https://doi.org/10.1016/j.cemconres.2019.105962.
  28. Motra, H.B., Hildebrand, J. and Dimmig-Osburg, A. (2014), "Assessment of strain measurement techniques to characterise mechanical properties of structural steel", Eng. Sci. Technol., Int. J., 17(4), 260-269. https://doi.org/10.1016/j.jestch.2014.07.006.
  29. Pan, Y., Iorga, L. and Pelegri, A.A. (2008), "Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption", Computat. Mater. Sci., 43(3), 450-461. https://doi.org/10.1016/j.commatsci.2007.12.016.
  30. Pan, Y., Iorga, L. and Pelegri, A.A. (2008), "Numerical generation of a random chopped fiber composite RVE and its elastic properties", Compos. Sci. Technol., 68(13), 2792-2798. https://doi.org/10.1016/j.compscitech.2008.06.007.
  31. Sommer, D.E., Kravchenko, S.G., Denos, B.R., Favaloro, A.J. and Pipes, R.B. (2020), "Integrative analysis for prediction of process-induced, orientation-dependent tensile properties in a stochastic prepreg platelet molded composite", Compos. Part A Appl. S., 130, 105759. https://doi.org/10.1016/j.compositesa.2019.105759.
  32. Tamboura, S., Ayari, H., Shirinbayan, M., Laribi, M.A., Bendaly, H., Sidhom, H., Tcharkhtchi, A. and Fitoussi, J. (2020), "Experimental and numerical multi-scale approach for Sheet-Molding-Compound composites fatigue prediction based on fiber-matrix interface cyclic damage", Int. J. Fatigue, 135, 105526. https://doi.org/10.1016/j.ijfatigue.2020.105526.
  33. Tang, H., Chen, Z., Xu, H., Liu, Z., Sun, Q., Zhou, G., Yan, W., Han, W. and Su, X. (2020), "Computational micromechanics model based failure criteria for chopped carbon fiber sheet molding compound composites", Compos. Sci. Technol., 200, 108400. https://doi.org/10.1016/j.compscitech.2020.108400.
  34. Wilkinson, A.N. and Ryan, A.J. (1998), Polymer Processing and Structure Development, Springer, Netherlands.
  35. Yu, J., Zhou, C. and Zhang, H. (2017), "A micro-image based reconstructed finite element model of needlepunched C/C composite", Compos. Sci. Technol., 153, 48-61. https://doi.org/10.1016/j.compscitech.2017.09.029.
  36. Zhao, J., Su, D.X., Yi, J.M., Cheng, G., Turng, L.S. and Osswald, T. (2020), "The effect of micromechanics models on mechanical property predictions for short fiber composites", Compos. Struct., 244, 112229. https://doi.org/10.1016/j.compstruct.2020.112229.
  37. Zhou, J., Qi, L. and Gokhale, A.M. (2016), "Generation of three-dimensional microstructure model for discontinuously reinforced composite by modified random sequential absorption method", J. Eng. Mater. Technol., 138(2), 021001. https://doi.org/10.1115/1.4032152.
  38. Zhu, F.Y., Jeong, S., Lim, H.J. and Yun, G.J. (2018), "Probabilistic multiscale modeling of 3D randomly oriented and aligned wavy CNT nanocomposites and RVE size determination", Compos. Struct., 195, 265-275. https://doi.org/10.1016/j.compstruct.2018.04.060.