Acknowledgement
이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임 (20202020800030, 제로에너지건축물 구현을 위한 스마트 외장재·설비 융복합 기술개발 및 성능평가 체계 구축, 실증)
References
- Ayoub, M. (2019). 100 Years of daylihgting: A chronological review of daylight prediction and calculation methods, Solar Energy, 194, 360-390. https://doi.org/10.1016/j.solener.2019.10.072
- Afshari, S. & Mishra, S. (2016). A plug-and-play realization of decentralized feedback control for smart lighting systems, IEEE Transactions on Control Systems Technology, 24(4), 1317-1327. https://doi.org/10.1109/TCST.2015.2487880
- Borile, S., Pandharipande, A., Caicedo, D., Schenato, L. & Cenedese, A. (2017). A data-driven daylight estimation approach to lighting control, IEEE Access, 5, 21461-21471. https://doi.org/10.1109/ACCESS.2017.2679807
- Caicedo, D., Pandharipande, A., & Willems, F. M. J. (2014). Daylight-adapted lighting control using light sensor calibration prior-information, Energy and Buildings, 73, 105-114. https://doi.org/10.1016/j.enbuild.2014.01.022
- Delvaeye, R., Ryckaert, W., Stroobant, L., Hanslaer, P., Klein, R., & Breesch, H. (2016). Analysis of senergy savings of three daylight control systems in a school building by means of monitoring, Energy and Buildings, 127, 969-979. https://doi.org/10.1016/j.enbuild.2016.06.033
- Di Laura, D. L., Houser, K. W., Mistrick, R. G., & Steffy, G. R. (2011). The lighting handbook: reference and application, New York, Illuminating Engineering Society of North America.
- Guo, X., Tiller, D. K., Henze, G. P. & Waters, C.E. (2010). The performance of occupancy-based lighting control systems: A review, Lighting Research & Technology, 42(4), 415-431. https://doi.org/10.1177/1477153510376225
- Haq, M., Hassan, M., Abdullah, H., Rahman, H., Abdullah, M., Hussin, F., & Said, D. (2014). A review on lighting control technologies in commercial buildings. Renewable and Sustainable Energy Reviews, 33, 268-279. https://doi.org/10.1016/j.rser.2014.01.090
- Hermkes, M., Kuehn, N. M. & Riggelsen, C. (2014). Simultaneous quantification of epistemic and aleatory uncertainty in GPMEs using Gaussian process regression. Bulletin of Earthquake Engineering, 12, 449-466. https://doi.org/10.1007/s10518-013-9507-7
- Hu, J., Place, W., & Konradi, C. (2012). Incorporating Sky Luminance Data Measured by EKO Scanner with a Scanning Sky Simulator for Predicting Daylight Quantity in Buildings. Am. Sol. Energy Soc.-Solar, 2012.
- Jain, S. & Garg, V. (2018). A review of open loop control strategies for shades, blinds, and integrated lighting by use of real-time daylight prediction methods, Building and Environment, 135, 352-364. https://doi.org/10.1016/j.buildenv.2018.03.018
- Ji, Y., Ok, G., & Kwon, D. (2019). Environmental monitoring system for intelligent buildings using IoT, Korea computer congress 2019, 345-346.
- Kazanasmaz, T., Gunaydin, M. & Binol, S. (2009). Artificial neural network to predict daylight illuminance in office buildings, Building and Environment, 44(8), 1751-1757. https://doi.org/10.1016/j.buildenv.2008.11.012
- Kim, J. M., & Park, C. S. (2020). Epistemic and aleatoric uncertainty of bayesian neural network model for a chiller, Journal of Architectural Institute of Korea, 36(6), 177-184. https://doi.org/10.5659/JAIK.2020.36.6.177
- Kim, Y. S., Kim, J. M., Shin, H. S., & Park, C. S. (2020). Simulation-assisted optimal lighting control for a factory building, Journal of Architectural Institute of Korea, 36(8), 127-135. https://doi.org/10.5659/JAIK.2020.36.8.127
- Maasoumy, M., Razmara, M., Shahbakhti, M. & Vincentelli, A. S. (2014). Handling model uncertainty in model predictive control for energy efficient buildings, Energy and Buildings, 77, 377-392. https://doi.org/10.1016/j.enbuild.2014.03.057
- Mahdavi, A. (2008). Predictive simulation-based lighting and shading systems contol in buildings, Building Simulation, 1(1), 25-35. https://doi.org/10.1007/s12273-008-8101-4
- Mardaljevic, J. (2015). Climate-based daylight modeling and its discontents, CIBSE Technical Symposium, London.
- Meugheuvel, N., Pandharipande, A., Caicedo, D., & Hof, P. P. J. (2014). Distributed lighting control with daylight and occupancy adaptation, Energy and Buildings, 75, 321-329. https://doi.org/10.1016/j.enbuild.2014.02.016
- Nagpal, H., Stanio, A. & Basu, B. (2020). Robust model predictive control of HVAC systems with uncertainty in building parameters using linear matrix inequalities, Advances in Building Energy Research, 14(3), 338-354. https://doi.org/10.1080/17512549.2019.1588165
- Pandharipande, A., & Caicedo, D. (2015). Smart indoor lighting systems with luminaire-based sensing: A review of lighting control approaches. Energy and Buildings, 104, 369-377. https://doi.org/10.1016/j.enbuild.2015.07.035
- Public Data Portal. (2021). Meteorological Administration_Short-term forecast inquiry, Retrieved September 8, 2021 from https://www.data.go.kr/en/data/15084084/openapi.do
- Rasmussen, C.E. & Williams, C. K. I. (2006). Gaussian Process for Machine Learning, Massachusetts, MIT Press.
- Reinhart, C. F. (2011). Daylight performance predictions. In Hensen, J. L., Lamberts, R. (Eds.), Building performance simulation for design and operation. Spon Press, New York, United Sates, 235-276.
- Rossi, M., Pandharipande, A., Caicedo, D., Schenato, L. & Cenedese, A. (2015). Personal lighting control with occupancy and daylight adaptation. Energy and Buildings, 105, 263-272. https://doi.org/10.1016/j.enbuild.2015.07.059
- Sun, Y., Su, H., Wu, C. J., & Augenbroe, G. (2015). Quantification of model form uncertainty in the calculation of solar diffuse irradiation on inclined surfaces for building energy simulation. Journal of Building Performance Simulation, 8(4), 253-265. https://doi.org/10.1080/19401493.2014.914247
- Tian, W., Heo, Y., Wilde, P., Li, Z., Yan, D., Park, C. S., Feng, X. & Augenbroe, G. (2018). A review of uncertainty analysis in building energy assessment, Renewable and Sustainable Energy Reviews, 93, 285-301. https://doi.org/10.1016/j.rser.2018.05.029
- Tregenza, P. R. & Waters, I. M. (1983). Daylight coefficients, Lighting Research & Technology, 15(2), 65-71. https://doi.org/10.1177/096032718301500201
- Tregenza, P. R. (2017). Uncertainty in daylight calculations, Lighting Research & Technology, 49(7), 829-844. https://doi.org/10.1177/1477153516653786
- Wagiman, K. R., Abdullah, M. N., Hassan, M. Y., Radzi, N. H. M., Baker, A. H. A., & Kwang, T. C. (2020). Lighting system control techniques in commercial buildings: Current trends and future directions, Journal of Building Engineering, 31.
- Yun, G., Yoon, K. C., & Kim, K. S. (2014). The influence of shading control strategies on the visual comfort and energy demand of office buildings. Energy and Buildings, 84, 70-85. https://doi.org/10.1016/j.enbuild.2014.07.040