DOI QR코드

DOI QR Code

기계학습을 이용한 비점성토 및 점성토 지반에서 시간의존 교각주위 국부세굴의 예측

Prediction of time dependent local scour around bridge piers in non-cohesive and cohesive beds using machine learning technique

  • 최성욱 (연세대학교 건설환경공학과) ;
  • 최성욱 (연세대학교 건설환경공학과) ;
  • 최병웅 (환경부 국립환경과학원 영산강 물환경연구소)
  • Choi, Sung-Uk (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Seongwook (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Byungwoong (Yeongsan River Environment Research Center, National Institute of Environmental Research, Ministry of Environment)
  • 투고 : 2021.11.02
  • 심사 : 2021.11.17
  • 발행 : 2021.12.31

초록

본 논문에서는 기계학습을 이용하여 비점성토 및 점성토 지반에서 시간에 따른 교각주위 국부세굴을 예측하였다. 기계학습 기법으로는 과적합 오차를 유발하지 않는다고 알려진 Support Vector Machines (SVM) 기법이 사용되었다. 비점성토 지반 및 점성토 지반에서 시간에 따라 발달하는 세굴심을 7개 및 9개의 변수를 각각 이용하여 표현하였다. 여러 실험을 통해 얻어진 시계열 자료를 이용하여 개발된 모형을 학습시키고 검증하였다. 계산된 평균절대비오차(MAPE)에 의하면 모형의 학습과 검증이 적절하게 수행된 것으로 나타났다. 실험 결과뿐 아니라 Choi and Cho 공식과 Briaud et al.이 제시한 SRICOS 방법에 의한 결과와 비교하였다. 본 연구를 통해 양질의 자료가 충분히 제공되는 경우 SVM 모형이 비점성토 및 점성토 지반 시간의존 국부세굴을 예측할 수 있음을 보여주었다.

This paper presents a machine learning technique applied to prediction of time-dependent local scour around bridge piers in both non-cohesive and cohesive beds. The support vector machines (SVM), which is known to be free from overfitting, is used. The time-dependent scour depths are expressed by 7 and 9 variables for the non-cohesive and cohesive beds, respectively. The SVM models are trained and validated with time series data from different sources of experiments. Resulting Mean Absolute Percentage Error (MAPE) indicates that the models are trained and validated properly. Comparisons are made with the results from Choi and Choi's formula and Scour Rate in Cohesive Soils (SRICOS) method by Briaud et al., as well as measured data. This study reveals that the SVM is capable of predicting time-dependent local scour in both non-cohesive and cohesive beds under the condition that sufficient data of good quality are provided.

키워드

과제정보

본 연구는 2021년도 정부의 재원으로 한국연구재단의 지원(NRF2020R1A2B5B01098937)을 받아 수행된 연구입니다. 이에 감사드립니다.

참고문헌

  1. Baranya, S., Olsen, N.R.B., Stoesser, T., and Sturm, T. (2012). "Three-dimensional RANS modeling of flow around circular piers using nested grids." Engineering Applications of Computational Fluid Mechanics, Vol. 6, No. 4, pp. 648-662. https://doi.org/10.1080/19942060.2012.11015449
  2. Bateni, S.M., Borghei, S.M., and Jeng, D.S. (2007a). "Neural network nd neuro-fuzzy assessments for scour depth around bridge piers." Engineering Applications of Artificial Intelligence, Vol. 20, No. 3, pp. 401-414. https://doi.org/10.1016/j.engappai.2006.06.012
  3. Bateni, S.M., Jeng, D.S., and Melville, B.W. (2007b). "Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers." Advances in Engineering Software, Vol. 38, No. 2, pp. 102-111. https://doi.org/10.1016/j.advengsoft.2006.08.004
  4. Briaud, J.L. (2004). Pier and contraction scour in cohesive soils. NCHRP report No. 516, Transportation Research Board, Washington D.C., U.S.
  5. Briaud, J.L., Chen, H.C., Li, Y., and Nurtjahyo, P. (2004). "SRICOS-EFA method for complex piers in fine-grained soils." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 11, pp. 1180-1191. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:11(1180)
  6. Briaud, J.L., Ting, F.C., Chen, H.C., Gudavalli, R., Perugu, S., and Wei, G. (1999). "SRICOS: Prediction of scour rate in cohesive soils at bridge piers." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 4, pp. 237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237)
  7. Chiew, Y.M. (1984). Local Scour at Bridge Piers. Auckland University, New Zealand.
  8. Choi, S.U., and Choi, B. (2016). "Prediction of time dependent local scour around bridge piers." Water and Environment Journal, Vol. 30, No. 1-2, pp. 14-21. https://doi.org/10.1111/wej.12157
  9. Choi, S.U., Choi, B., and Choi, S. (2015). "Improving predictions made by ANN model using data quality assessment: An application to local scour around bridge piers." Journal of Hydroinformatics, Vol. 17, No. 6, pp. 977-989. https://doi.org/10.2166/hydro.2015.097
  10. Choi, S.U., Choi, B., and Lee, S. (2017). "Prediction of local scour around bridge piers using the ANFIS method." Neural Computing and Applications, Vol. 28, No. 2, pp. 335-344. https://doi.org/10.1007/s00521-015-2062-1
  11. Debnath, K., and Chaudhuri, S. (2010). "Bridge pier scour in clay-sand mixed sediments at near-threshold velocity for sand." Journal of Hydraulic Engineering, Vol. 136, No. 9, pp. 597-609. https://doi.org/10.1061/(asce)hy.1943-7900.0000221
  12. Ettema, R. (1980). Scour at bridge piers. Report No. 216, School of Engineering, University of Auckland, Auckland, New Zealand.
  13. Ettema, R., Kirkil, G., and Muste, M. (2006). "Similitude of large-scale turbulence in experiments on local scour at cylinders." Journal of Hydraulic Engineering, Vol. 132, No. 1, pp. 33-40. https://doi.org/10.1061/(asce)0733-9429(2006)132:1(33)
  14. Firat, M. (2009). "Scour depth prediction at bridge piers by Anfis approach." Proceedings of the Institution of Civil EngineersWater Management, Vol. 162, No. 4, pp. 279-288. https://doi.org/10.1680/wama.2009.00061
  15. Hong, J.H., Goyal, M.K., Chiew, Y.M., and Chua, L.H. (2012). "Predicting time-dependent pier scour depth with support vector regression." Journal of Hydrology, Vol. 468, pp. 241-248. https://doi.org/10.1016/j.jhydrol.2012.08.038
  16. Hosny, M.M. (1995). Experimental study of local scour around circular bridge piers in cohesive soils. Ph. D. dissertation, Colorado State University, CO, U.S.
  17. Kim, H.S., and Park, M. (2014). "Three-dimensional computational modeling of scour around pile groups." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 907-919. https://doi.org/10.3741/JKWRA.2014.47.10.907
  18. Kim, T., Choi, B., and Choi, S.U. (2014). "Prediction of local scour around bridge piers using GEP model." Journal of the Korean Society of Civil Engineering, Vol. 34, No. 6, pp. 1779-1786. https://doi.org/10.12652/Ksce.2014.34.6.1779
  19. Kirkil, G., Constantinescu, G., and Ettema, R. (2009). "Detached eddy simulation investigation of turbulence at a circular pier with scour hole." Journal of Hydraulic Engineering, Vol. 135, No. 11, pp. 888-901. https://doi.org/10.1061/(asce)hy.1943-7900.0000101
  20. Lanca, R.M., Fael, C.S., Maia, R.J., Pego, J.P., and Cardoso, A.H. (2013). "Clear-water scour at comparatively large cylindrical piers." Journal of Hydraulic Engineering, Vol. 139, No. 11, pp. 1117-1125. https://doi.org/10.1061/(asce)hy.1943-7900.0000788
  21. Lee, C.H., Ahn, J.H., Lee. J.H., and Kim, T.W. (2009). "Prediction of scour depth using incorporation of cluster analysis into artificial neural networks." Journal of the Korean Society of Civil Engineering, Vol. 29, No. 2B, pp. 111-120.
  22. Lee, H.J., and Oh, H.S. (2018). "Analysis on the scour reduction effect by controlling downflow." Journal of Korean Society of Disaster and Security, Vol. 11, No. 2, pp. 61-67. https://doi.org/10.21729/KSDS.2018.11.2.61
  23. Melville, B.W., and Chiew, Y.M. (1999). "Time scale for local scour at bridge piers." Journal of Hydraulic Engineering, No. 125, No. 1, pp. 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
  24. Melville, B.W., and Coleman, S.E. (2000). Bridge scour. Water Resources Publication, LLC, U.S.
  25. Melville, B.W., and Raudkivi, A.J. (1996). "Effects of foundation geometry on bridge pier scour." Journal of Hydraulic Engineering, Vol. 122, No. 4, pp. 203-209. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203)
  26. Melville, B.W., and Sutherland, A.J. (1988). "Design method for local scour at bridge piers." Journal of Hydraulic Engineering, Vol. 114, No. 10, pp. 1210-1226. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)
  27. Najafzadeh, M., and Barani, G.A. (2014). "Experimental study of local scour around a vertical pier in cohesive soils." Scientia Iranica, Vol. 21, No. 2, pp. 241-250.
  28. Pandey, M., Sharma, P.K., Ahmad, Z., and Singh, U.K. (2017). "Evaluation of existing equations for temporal scour depth around circular bridge piers." Environmental Fluid Mechanics, Vol. 17, No. 5, pp. 981-995. https://doi.org/10.1007/s10652-017-9529-9
  29. Rambabu, M., Rao, S.N., and Sundar, V. (2003). "Current-induced scour around a vertical pile in cohesive soil." Ocean Engineering, Vol. 30, No. 7, pp. 893-920. https://doi.org/10.1016/S0029-8018(02)00063-X
  30. Raudkivi, A.J., and Ettema, R. (1983). "Clear-water scour at cylindrical piers." Journal of Hydraulic Engineering, Vol. 109, No. 3, pp. 338-350. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338)
  31. Smola, A.J. (1996). Regression estimation with support vector learning machines. Ph. D. dissertation, Technische Universitat Munchen, Germany.
  32. Sumer, B.M., Christiansen, N., and Fredsoe, J. (1992). "Time scale of scour around a vertical pile." Proceedings of the 2nd International Offshore & Polar Engineering Conference (Vol. 3), ISOPE, San Francisco, CA, U.S.
  33. Ting, F.C.K., Briaud, J.L., Chen, H.C., Gudavalli, R., Perugu, S., and Wei, G. (2001). "Flume tests for scour in clay at circular piers." Journal of Hydraulic Engineering, Vol. 127, No. 11, pp. 969-978. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(969)
  34. Vapnik, V.N. (1995). The nature of statistical learning theory. Springer, New York, NY, U.S.
  35. Yanmaz, A.M., and Altinbilek, H.D. (1991). "Study of time dependent local scour around bridge piers." Journal of Hydraulic Engineering, Vol. 117, pp. 1247-1268. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1247)