과제정보
본 연구는 2021년도 정부의 재원으로 한국연구재단의 지원(NRF2020R1A2B5B01098937)을 받아 수행된 연구입니다. 이에 감사드립니다.
참고문헌
- Baranya, S., Olsen, N.R.B., Stoesser, T., and Sturm, T. (2012). "Three-dimensional RANS modeling of flow around circular piers using nested grids." Engineering Applications of Computational Fluid Mechanics, Vol. 6, No. 4, pp. 648-662. https://doi.org/10.1080/19942060.2012.11015449
- Bateni, S.M., Borghei, S.M., and Jeng, D.S. (2007a). "Neural network nd neuro-fuzzy assessments for scour depth around bridge piers." Engineering Applications of Artificial Intelligence, Vol. 20, No. 3, pp. 401-414. https://doi.org/10.1016/j.engappai.2006.06.012
- Bateni, S.M., Jeng, D.S., and Melville, B.W. (2007b). "Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers." Advances in Engineering Software, Vol. 38, No. 2, pp. 102-111. https://doi.org/10.1016/j.advengsoft.2006.08.004
- Briaud, J.L. (2004). Pier and contraction scour in cohesive soils. NCHRP report No. 516, Transportation Research Board, Washington D.C., U.S.
- Briaud, J.L., Chen, H.C., Li, Y., and Nurtjahyo, P. (2004). "SRICOS-EFA method for complex piers in fine-grained soils." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 11, pp. 1180-1191. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:11(1180)
- Briaud, J.L., Ting, F.C., Chen, H.C., Gudavalli, R., Perugu, S., and Wei, G. (1999). "SRICOS: Prediction of scour rate in cohesive soils at bridge piers." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 4, pp. 237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237)
- Chiew, Y.M. (1984). Local Scour at Bridge Piers. Auckland University, New Zealand.
- Choi, S.U., and Choi, B. (2016). "Prediction of time dependent local scour around bridge piers." Water and Environment Journal, Vol. 30, No. 1-2, pp. 14-21. https://doi.org/10.1111/wej.12157
- Choi, S.U., Choi, B., and Choi, S. (2015). "Improving predictions made by ANN model using data quality assessment: An application to local scour around bridge piers." Journal of Hydroinformatics, Vol. 17, No. 6, pp. 977-989. https://doi.org/10.2166/hydro.2015.097
- Choi, S.U., Choi, B., and Lee, S. (2017). "Prediction of local scour around bridge piers using the ANFIS method." Neural Computing and Applications, Vol. 28, No. 2, pp. 335-344. https://doi.org/10.1007/s00521-015-2062-1
- Debnath, K., and Chaudhuri, S. (2010). "Bridge pier scour in clay-sand mixed sediments at near-threshold velocity for sand." Journal of Hydraulic Engineering, Vol. 136, No. 9, pp. 597-609. https://doi.org/10.1061/(asce)hy.1943-7900.0000221
- Ettema, R. (1980). Scour at bridge piers. Report No. 216, School of Engineering, University of Auckland, Auckland, New Zealand.
- Ettema, R., Kirkil, G., and Muste, M. (2006). "Similitude of large-scale turbulence in experiments on local scour at cylinders." Journal of Hydraulic Engineering, Vol. 132, No. 1, pp. 33-40. https://doi.org/10.1061/(asce)0733-9429(2006)132:1(33)
- Firat, M. (2009). "Scour depth prediction at bridge piers by Anfis approach." Proceedings of the Institution of Civil EngineersWater Management, Vol. 162, No. 4, pp. 279-288. https://doi.org/10.1680/wama.2009.00061
- Hong, J.H., Goyal, M.K., Chiew, Y.M., and Chua, L.H. (2012). "Predicting time-dependent pier scour depth with support vector regression." Journal of Hydrology, Vol. 468, pp. 241-248. https://doi.org/10.1016/j.jhydrol.2012.08.038
- Hosny, M.M. (1995). Experimental study of local scour around circular bridge piers in cohesive soils. Ph. D. dissertation, Colorado State University, CO, U.S.
- Kim, H.S., and Park, M. (2014). "Three-dimensional computational modeling of scour around pile groups." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 907-919. https://doi.org/10.3741/JKWRA.2014.47.10.907
- Kim, T., Choi, B., and Choi, S.U. (2014). "Prediction of local scour around bridge piers using GEP model." Journal of the Korean Society of Civil Engineering, Vol. 34, No. 6, pp. 1779-1786. https://doi.org/10.12652/Ksce.2014.34.6.1779
- Kirkil, G., Constantinescu, G., and Ettema, R. (2009). "Detached eddy simulation investigation of turbulence at a circular pier with scour hole." Journal of Hydraulic Engineering, Vol. 135, No. 11, pp. 888-901. https://doi.org/10.1061/(asce)hy.1943-7900.0000101
- Lanca, R.M., Fael, C.S., Maia, R.J., Pego, J.P., and Cardoso, A.H. (2013). "Clear-water scour at comparatively large cylindrical piers." Journal of Hydraulic Engineering, Vol. 139, No. 11, pp. 1117-1125. https://doi.org/10.1061/(asce)hy.1943-7900.0000788
- Lee, C.H., Ahn, J.H., Lee. J.H., and Kim, T.W. (2009). "Prediction of scour depth using incorporation of cluster analysis into artificial neural networks." Journal of the Korean Society of Civil Engineering, Vol. 29, No. 2B, pp. 111-120.
- Lee, H.J., and Oh, H.S. (2018). "Analysis on the scour reduction effect by controlling downflow." Journal of Korean Society of Disaster and Security, Vol. 11, No. 2, pp. 61-67. https://doi.org/10.21729/KSDS.2018.11.2.61
- Melville, B.W., and Chiew, Y.M. (1999). "Time scale for local scour at bridge piers." Journal of Hydraulic Engineering, No. 125, No. 1, pp. 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
- Melville, B.W., and Coleman, S.E. (2000). Bridge scour. Water Resources Publication, LLC, U.S.
- Melville, B.W., and Raudkivi, A.J. (1996). "Effects of foundation geometry on bridge pier scour." Journal of Hydraulic Engineering, Vol. 122, No. 4, pp. 203-209. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203)
- Melville, B.W., and Sutherland, A.J. (1988). "Design method for local scour at bridge piers." Journal of Hydraulic Engineering, Vol. 114, No. 10, pp. 1210-1226. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)
- Najafzadeh, M., and Barani, G.A. (2014). "Experimental study of local scour around a vertical pier in cohesive soils." Scientia Iranica, Vol. 21, No. 2, pp. 241-250.
- Pandey, M., Sharma, P.K., Ahmad, Z., and Singh, U.K. (2017). "Evaluation of existing equations for temporal scour depth around circular bridge piers." Environmental Fluid Mechanics, Vol. 17, No. 5, pp. 981-995. https://doi.org/10.1007/s10652-017-9529-9
- Rambabu, M., Rao, S.N., and Sundar, V. (2003). "Current-induced scour around a vertical pile in cohesive soil." Ocean Engineering, Vol. 30, No. 7, pp. 893-920. https://doi.org/10.1016/S0029-8018(02)00063-X
- Raudkivi, A.J., and Ettema, R. (1983). "Clear-water scour at cylindrical piers." Journal of Hydraulic Engineering, Vol. 109, No. 3, pp. 338-350. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338)
- Smola, A.J. (1996). Regression estimation with support vector learning machines. Ph. D. dissertation, Technische Universitat Munchen, Germany.
- Sumer, B.M., Christiansen, N., and Fredsoe, J. (1992). "Time scale of scour around a vertical pile." Proceedings of the 2nd International Offshore & Polar Engineering Conference (Vol. 3), ISOPE, San Francisco, CA, U.S.
- Ting, F.C.K., Briaud, J.L., Chen, H.C., Gudavalli, R., Perugu, S., and Wei, G. (2001). "Flume tests for scour in clay at circular piers." Journal of Hydraulic Engineering, Vol. 127, No. 11, pp. 969-978. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(969)
- Vapnik, V.N. (1995). The nature of statistical learning theory. Springer, New York, NY, U.S.
- Yanmaz, A.M., and Altinbilek, H.D. (1991). "Study of time dependent local scour around bridge piers." Journal of Hydraulic Engineering, Vol. 117, pp. 1247-1268. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1247)