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ABSTRACT. This study proposes a methodology for mission/path planning of an unmanned aerial 

vehicle (UAV) using an artificial potential field with the Markov Decision Process (MDP). The 

planning problem is formulated as an MDP. A low-resolution solution of the MDP is obtained and 

used to define an artificial potential field, which provides a continuous UAV mission plan. A 

numerical case study is conducted to demonstrate the validity of the proposed technique. 

1. INTRODUCTION 

A traditional routing problem framework provides an optimal solution without considering 

the change in the mission environment. Note the traditional vehicle routing problem (VRP) 

framework is deterministic and it is difficult to handle actual problem environments involving 

uncertainty. The MDP can be applied to problems involving stochastic factors (e.g., UAV 

mission under uncertain environment), addressing the gap in the traditional framework. 

Various past studies formalized uncertain UAV missions using the MDP framework such as 

search, rescue, and reconnaissance [1-2]. The use of extended MDP frameworks such as 

partially-observable MDP is actively studied [3]. A reinforcement learning can be applied to 

the sequential UAV decision-making process using the MDP formulation [4-6]. Some studies 

extended the MDP based methodology to the planning of multiple UAVs with the 

centralized/decentralized approaches [7-9]. Some past studies combined the MDP and the 

potential field techniques and used the value function map generated by MDP for 

reinforcement learning with various artificial potential fields [10-11]. The focus of these 

studies were the online planner for collision avoidance rather than a whole mission planning.  

This paper proposes a mission/path planning method for an unmanned aerial vehicle (UAV) 

based on the artificial potential field (APF) and the Markov decision process (MDP). The 

proposed method constructs an APF using interpolation of the optimal policies and values 

obtained from the MDP describing the UAV operations. The APF provides a high-resolution 

solution (route), which is constructed relatively easily by solving a relatively low-resolution 

MDP. Hence, the combination of the two approaches enables efficient operations of a UAV 

with light computing resources. 

The remaining parts of this paper are organized as follows. Section 2 introduces the 

theoretical backgrounds of MDP and UAV mission planning. Section 3 presents the 
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mathematical formulation of a UAV planning problem as an MDP. The artificial potential field 

technique constructed based on the optimal value function obtained from the MDP is 

discussed in Section 4. Section 5 discusses the mission planning case study using the proposed 

method. Finally, Section 6 presents the conclusion of this paper and future study subjects. 

 

 

2. MARKOV DECISION PROCESS 

2.1. Markov decision process 

The Markov Decision Process (MDP) is a mathematical framework used to model discrete-

time probability control processes. It adds rewards and decision-making to the Markov 

process, a discrete-time stochastic process model. The framework is characterized by the 

Markov property in which the conditional probability distribution to arrive at a future state is 

affected only by the present state (memorylessness). 

 

 1 1 0 0 1 1( | ,..., ) ( | )t t t t t t t tP S s S s S s P S s S s            

 

where st represents the state of an agent at time t. Under this property, the state transition 

probability is determined only by the current state and the action (At) taken. We can also define 

a reward (Rt) obtained by transitioning to a new state. Thus an agent (decision-maker) changes 

the state through actions and obtains a reward. As such, the MDP models decision-making in 

an uncertain situation in which the behavioral results are partially random, and the behavior 

can only be partially controlled. Figure 1 exhibits the progress of the MDP. 

  

FIGURE 1. The progress of the Markov decision process [17] 

The MDP is defined as a 5-tuple ( , , , ,S A P R  ) whose elements are the state set (S), behavior 

set (A), state transition probability (P), reward set (R), and depreciation rate (  ). S and A are 

finite sets of all states/actions. R collects the reward (R(s, a, s’)) obtainable by selecting action 

a from current state s to transition to new state s’. Finally,   converts the value of future 

rewards into the present value considering uncertainty. The MDP defines a policy function 

( ) and a value function (V) representing the total reward obtainable by implementing the 

policy for an optimal decision-making process.   is a probability distribution of action a 

( A ) for a given state s ( S ) representing how a decision-maker behaves defined as follows: 
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The policy can be evaluated using a value function V , which is the expected value of the 

total reward obtained by implementing the policy  . The state-value function ( )V s  is the 

expected value of the total cumulative reward that can be calculated after implementing the 

policy starting at state s . We define the total cumulative return 
tG , which is the sum of 

rewards that can be obtained after current time t, as 
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Then V  is defined as 
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An optimal policy *( )s  is the behavior that enables the transition from the current state 

(s) to the state with the highest value function expressed as 

 

 *( ) arg max ( ')
a

s V s  ,   

 *( ) arg max ( )V s V s


 .   

 

 

2.2. Bellman Equation 

Bellman equation solves the value function ( )V s  using a recursive relationship, which 

yields the optimal policy *( )s  that maximizes the value function. The Bellman expectation 

equation is expressed as follows 
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In the equations, 1tR   is the present immediate reward and 1( )tV S   is the discounted 

value of the successor state. The optimal state value function for the optimal policy *  

should have the highest value. The value iteration technique determines the optimal policy by 

using the Bellman Optimality Equation [12] expressed as follows  
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Note that the MDP is a P-complete problem that satisfies the global optimality condition 

[13-14]. The computational complexity of an infinite-horizon, discounted-reward MDP used 

in this study is 2 )(O MN  . Because the worst-case number of iterations is proportional to 

log(1 / () )1    , the algorithm converges if   is not equal to 1 [15]. 

 

 

3. MDP-BASED UAV MISSION PLANNING FORMULATION 

 

3.1. UAV Mission problem 

 

3.1.1. Baseline UAV mission model 

 

The reference mission discussed in this study is a single UAV mission (visiting multiple 

target locations and returning to the base) under the presence of threats. The mission may 

include tasks such as delivery, surveillance, close-air support (CAS), and intelligence, 

surveillance, and reconnaissance (IS&R). To simplify the problem, we assumed a two-

dimensional motion of the UAV at a constant speed without change in the altitude. The UAV 

aims to visit missionN   mission locations and return to one of baseN   bases. The fuel 

consumption is proportional to the travel distance. The fuel shortage during the flight leads to 

the mission failure and refueling at bases is possible. Different weights are assigned to target 

locations representing their importance. There are threatN  hostile threats (radar) against the 

UAV. The risk level is modeled as a function depending on the distance between the UAV and 

the threat location [2]. Figure 2 illustrates the UAV mission considered in the study. 
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FIGURE 2. UAV mission considered in the study [17] 

 

3.1.2. Modeling components within the mission environment 

 

We model the risk associated with the threat as the failure probability (due to the shoot-

down) depending on the distance between the UAV and the threat location as follows [16] 

 

 ,

41/ (1 ( / ) )ifail ip r c  ,  (3.1) 
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where ri is the distance between the UAV and the ith threat, pfail,i is the shoot-down 

probability due to the ith threat, and pfail is the overall failure probability caused by the threats. 

Equation (3.1) reflects the fact that the probability of detection increases when the UAV gets 

closer to the threat (radar), where constant c indicates transmitted power based on two-ray 

ground-reflection model. Equation (3.2) expresses the overall mission failure probability. The 

mission success is finally achieved when the UAV reaches the goal location. 

 

3.2. Problem formulation 

 

3.2.1. State set (S) 

 

The state set S is defined as follows 

 

 1{ | [ , , , },..., , ]nS h f    s s q .  

 

The components of a state are the location (q), health (h), fuel (f), and task completion 

statuses ( i  ). A location (q) has two elements (x and y elements) and is defined on two-

dimensional grids. The health (h) represents is a Boolean variable whose value is 1 if the UAV 

is operational and 0 otherwise (fuel shortage or shoot-down). The fuel (f) represents the 

amount of fuel remaining during the mission. It can take an integer value ranging between 1 
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and fmax (100 % fuel). 
i  is a Boolean variable whose value is 1 if task i is completed and 0 

otherwise. Finally,    is a Boolean variable whose value is 1 if the whole mission is 

completed and 0 otherwise. 

 

 

3.2.2. Action set A 

 

Set A collects the actions that the UAV can take defined as 

 

 
, ,{ , , , }move d task i refuel terA a a a a .  (3.3) 

 

In Eq. (3.3), 
,move da  is the movement action capable of moving the UAV in direction d (up, 

down, left, and right). atask,i completes the ith task. Note that this action is admissible only at 

the ith task location. 
refuela  is the refueling action, which is admissible at one of bases. The 

action fully replenish the fuel (f = fmax). Finally, ater terminates the mission. It is admissible 

when all the tasks have been completed and the UAV has returned to one of bases.  

 

3.2.3. State transition probabilistic model P 

 

The state transition probability ( ( ' | , )P as s ) representing the probability that the current state 

(s) transitions to the next state (s’) by an action (a) is expressed as follows 
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The UAV position change occurs deterministically, leading to the following transition 

probability 
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In Eq. (3.4), the movement is admissible if q’ is reachable from q by action a. We 

stochastically modeled the transition in the health state h as follows 
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In Eq. (3.5), pfail is defined in Eqs. (3.1)-(3.2). The fuel state transition is deterministically 

modeled as 
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A task completion state transition is deterministically modeled as follows: 
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Finally, completion of the whole mission is modelled deterministically as follows: 
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3.2.4. Reward model R 

 

The compensation function ( , , ')R as s  models the gain/loss caused by state transitions as  

 ( , , ') ( , , ') ( , , ') ( , , ')mission failure fuelR a R a R a R a  s s s s s s s s ,   

where missionR  is a positive reward for mission success, 
failureR  is a negative reward for 

mission failure caused by shoot-down or fuel exhaustion, and 
fuelR  is a negative reward for 

fuel consumption. 
fuelk  is a value setting to control of fuel loss aspect, 0.0001 was used. The 

reward (loss) elements are modeled as 
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Note that these reward elements are designed so that the UAV performs its mission safely 

while selecting a route to consume minimum amount of fuel in the mission environment.  

 

4. MDP VALUE BASED ARTIFICIAL POTENTIAL FIELD 

 

4.1. Potential field path planning method 

 

The potential field path planning technique designs potential functions associated with the 

target and the obstacles representing the attracting and repulsive forces, respectively. The 

potential function considering these forces are presented as 
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In the equation, attU   and 
repU   are the potential function components representing the 

attractive and repulsive forces defined as 
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where q, qgoal,i, and qobs,j are the locations of the agent, the ith goal, and the jth obstacle, 

respectively.   is positive constant scaling factor for making suitable potential field and also 

Q is positive constant that adjusts effective distance of obstacle’s potential field. ( , )d q r  is 

the Euclidean distance between two positions (q and r). The attractive and repulsive forces 

are expressed by taking the gradients of the potential functions are follows 
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When the entire potential field is constructed, the potential-guided path planning is 

performed to move the agent based on the attractive/repulsive forces. 

 

 

4.2. MDP based artificial potential field 

 

A traditional potential field-based path planning approach introduced in the previous 

subsection moves the agent toward the direction of potential field gradient. However, the 

traditional method may generate local minima for non-convex obstacle shapes and the quality 

of the plan for instances with multiple target points are sometimes not very high. This paper 

addresses this issue by constructing a new artificial potential field based on the values 

obtained by the (low-resolution) MDP. In MDP, it is the optimal decision to take an action 

toward a high value, so if this value is reversed and used as a potential field, the gradient at a 

specific point can be said to be similar to the optimal decision in MDP. As an illustrative 
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example, Figure 3 presents the spatial distribution of value with a given state (other than 

location) obtained by the MDP. Figure 4 shows the distribution of potential constructed based 

on the values set up with the MDP solution (Figure 3). The value obtained from MDP were 

reversed to point lowest point of new potential field, similar as selecting optimal direction in 

MDP value distribution. Note that the values are obtained in a relatively coarse grid system, 

however, the potential generated using the values by interpolation can generate the path in a 

continuous space. 
 

  

FIGURE 3. Spatial distribution of value obtained by solving the MDP [17] 

  

FIGURE 4. Artificial potential field constructed based on MDP value [17] 

(interpolated & reversed MDP value to imitate optimal policy)  
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5. CASE STUDY 

 

This section presents a UAV planning case study using the MDP-based potential field 

technique introduced in this paper. The reference mission contains 3 targets (tasks), 2 bases, 

and 6 threats. Figure 5 shows the 2-D map illustrating the mission elements. Tables 2 and 3 

summarizes the parameter setting used for the case study. 

  

FIGURE 5. UAV mission elements for Case Study [17] 

 

TABLE 1. MDP parameters for Case Study 

Parameter   (-) ò   Max. No. of Iteration (-) 

Value 0.99 0.001 2000 

 

TABLE 2. Tasks reward and locations for the Case Study 

Task Task Reward (Rtask,i) (-) Location (qtask,i) 

Task 1 10 (8, 9) 

Task 2 30 (1, 16) 

Task 3 10 (14, 3) 
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TABLE 3. Threat locations for the Case Study 

Threat Threat Location (qthreat,i) 

Threat 1 (3,7) 

Threat 2 (12,12) 

Threat 3 (4,17) 

Threat 4 (13,6) 

Threat 5 (3,14) 

Threat 6 (14,19) 

 

5.1 Case 1: Potential field update upon task-completion 

 

We conducted a UAV path planning for the Case Study instance using the proposed MDP-

based potential field technique. Figure 6 shows the UAV path and associated change in the 

potential field throughout the mission period. All the three tasks are successfully conducted 

in the order of tasks 1, 2, and 3. Note that the potential field is updated with the change in the 

non-spatial state variables, which is shown in the right subfigure of Fig. 6. For example, once 

Task 1 is completed, the MDP solution lowers the value of moving to the completed task, 

which is reflected in the updated potential field constructed based on the MDP solution. 

 

   

FIGURE 6. Case 1 results: UAV trajectory (Left), Potential field change (Right) [17] 

 

5.2 Case 2: Potential field update upon remaining fuel change 

 

In the second case, the potential field is updated upon change in the remaining fuel. Figure 

7 shows the UAV path and associated change in the potential field throughout the case 2 

mission period. As a result, the potential fields has been updated 48 times (total 49 potential 

fields used) during the mission. The order of task completion is Task 1  Task 2  Task 3 
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and the UAV trajectory was very similar to the result of Case 1. However, we observed 

significant change in the potential field which is shown in the right subfigure of Fig 7, when 

the fuel level is too low to complete the mission without refueling. In this case, the planner 

commands the UAV visit the vase for refueling instead of conducting additional tasks. 

 

  

FIGURE 7. Case 2 results: UAV trajectory (Left), Potential field change (Right) [17] 

 

6. CONCLUSION 

A UAV mission planning technique using the artificial potential field (APF) constructed 

based on the (low-resolution) Markov decision process (MDP) is proposed in this paper. In 

the proposed approach, the path of a UAV is generated based on the attractive/repulsive forces 

caused by the potential fields associated with the targets/obstacles, which are determined 

using solution of the MDP. MDP formulation for UAV mission planning composed of multiple 

tasks, refueling bases, and threats is introduced and the technique to use its solution for 

potential field construction is presented. A UAV mission planning case study using the 

proposed technique demonstrates the efficacy of the approach. 

Study on the applicability of the proposed approach for various mission types can be one 

of interesting future research subject. By adding altitude-related states and action, mission 

environment can be expanded in three dimensions as well. An extension of the proposed 

approach to multi-agent problems can be also meaningful subject for future study. 

 

ACKNOWLEDGMENTS 

This paper is based on the master’s thesis of the first author (C. Moon) [17], which was 

originally written in Korean. 

 



UAV MISSION PLANNING USING MDP BASED APF 161 

REFERENCES 

[1] Waharte, S., & Trigoni, N., Supporting search and rescue operations with UAVs. In 2010 International 

Conference on Emerging Security Technologies, IEEE, 2010, pp. 142-147. 

[2] U. Choi, S. Jeong, J. Ahn, Autonomous Single UAV Reconnaissance Mission Planning in Multi-Base and Multi-

Threat Environment Based on Markov Decision Process, 2016 KSAS Fall Conference, Jeju, Korea 2016. 

[3] S chesvold, D., Tang, J., Ahmed, B. M., Altenburg, K., & Nygard, K. E. POMDP planning for high level UAV 

decisions: Search vs. strike. In In Proceedings of the 16th International Conference on Computer Applications 

in Industry and Engineering, 2003. 

[4] Ure, N. K., Chowdhary, G., Chen, Y. F., How, J. P., & Vian, J. Distributed learning for planning under 

uncertainty problems with heterogeneous teams. Journal of Intelligent & Robotic Systems, 74(1-2) (2014), 

529-544. 

[5] Lei, G., Dong, M. Z., Xu, T., & Wang, L. Multi-agent path planning for unmanned aerial vehicle based on 

threats analysis. In 2011 3rd International Workshop on Intelligent Systems and Applications, IEEE, 2011, pp. 

1-4. 

[6] Challita, U., Saad, W., & Bettstetter, C., Deep reinforcement learning for interference-aware path planning of 

cellular-connected UAVs. In 2018 IEEE International Conference on Communications (ICC) IEEE, 2018, pp. 

1-7. 

[7] Bethke, B., Redding, J. and How, J. P., Agent Capability in Persistent Mission Planning using Approximate 

Dynamic Programming, 2010 American Control Conference, 2010.  

[8] B. Jeong G. Kim ,J. Ha , H. Choi., MDP based Mission Planning for multi-agent information gathering, 2013 

KSAS Fall Conference, Jeju, Korea 2013. 

[9] Jeong, B. M., Ha, J. S., & Choi, H. L. MDP-based mission planning for multi-UAV persistent surveillance. In 

2014 14th International Conference on Control, Automation and Systems, ICCAS 2014, IEEE, 2014, pp. 831-

834. 

[10] Bhowal, A. Potential Field Methods for Safe Reinforcement Learning: Exploring Q-Learning and Potential 

Fields. Master’s thesis, TU Delft, Delft, Netherlands, 2017. 

[11] Zeng, J., Ju, R., Qin, L., Hu, Y., Yin, Q., & Hu, C., Navigation in Unknown Dynamic Environments Based on 

Deep Reinforcement Learning. Sensors, 19(18) (2019), 3837. 

[12] Bellman, R., A Markovian decision process. Journal of mathematics and mechanics, (1957), 679-684. 

[13] Shapley, L. S., Stochastic games. Proceedings of the national academy of sciences, 39(10) (1953), 1095-1100. 

[14] Papadimitriou, C. H., & Tsitsiklis, J. N., The complexity of Markov decision processes. Mathematics of 

operations research, 12(3) (1987), 441-450. 

[15] Littman, M. L., Dean, T. L., & Kaelbling, L. P., On the complexity of solving Markov decision problems. In 

Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, 1995, pp. 394-402. 

[16] Jakes, W. C., & Cox, D. C., Microwave mobile communications. Wiley-IEEE Press, 1994. 

[17] Moon, C., UAV Mission Planning Using MDP-based Artificial Potential Field, Master’s Thesis, Korea 

Advanced Institute of Science and Technology (KAIST), 2021 (written in Korean). 

 




