DOI QR코드

DOI QR Code

유한요소법을 적용한 내수 및 외수 침수해석 모형 개발

Development of Urban and River Flood Simulation Model Using FEM

  • Nam, Myeong-Jun (Fusion Research Institute, Sinwoo CO., LTD.) ;
  • Lee, Jae-Young (Fusion Research Institute, Sinwoo CO., LTD.) ;
  • Lee, Chang-Hee (Department of Fire and Disaster Prevention Engineering, Jungwon University)
  • 투고 : 2021.11.11
  • 심사 : 2021.12.20
  • 발행 : 2021.12.28

초록

본 연구에서는 내외수 범람을 동시에 고려하여 침수해석을 수행하는 시뮬레이션 모형을 개발하였다. 외수 침수해석을 위해 제방 월류 및 파제에 의한 하천범람 유입량을 고려할 수 있도록 하였고, 내수 침수해석을 위해서 이중배수체계 개념을 반영하도록 구성하였다. 지표면 침수해석과 관련하여 하천의 유동해석과 제내지의 유동해석을 통합적으로 수행하기 위해 유한요소법(FEM)을 적용하여 침수확산 해석을 수행할 수 있도록 하였다. 모형의 검증을 위해 우선 개념모델에 대해서 적용하였고, 이어서 실제 유역에 대해서 적용하였다. 본 연구를 통해 홍수로 인한 피해를 줄이고 홍수 피해를 저감하기 위한 효과적인 대책을 마련하기 위해 활용될 수 있을 것으로 기대된다.

This study develops a simulation model that performs flood analysis considering both urban and river flood. For the analysis of river flood, this study considers river overflow by levee breach, and reflects the concept of the dual drainage systems for the analysis of urban flood. In relation to the surface flood analysis, FEM technique is applied to the flood diffusion analysis in order to conduct the flow analysis of urban and river flood simultaneously. For the verification of the model, it is first applied to the conceptual model, and then applied to the actual watershed. It is expected that this study will be able to reduce flood damage and to prepare effective countermeasures to reduce flood damage.

키워드

과제정보

This work was supported by Korea Environment Industry & Technology Institute(KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program(or Project), funded by Korea Ministry of Environment(MOE)(2019002850006)

참고문헌

  1. J. I. Barredo. (2009). Normalised flood losses in Europe: 1970-2006. Natural Hazards And Earth System Sciences, 9, 97-104. DOI : 10.5194/nhess-9-97-2009
  2. J. Teng, A. J. Jakeman, J. Vaze, B. F. W. Croke, D. Dutta & S. Kim. (2017). Flood Inundation Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis. Environmental Modelling & Software, 90, 201-216. DOI : 10.1016/j.envsoft.2017.01.006
  3. D. B. Bernet et al. (2019). Characterizing precipitation events leading to surface water flood damage over large regions of complex terrain. Environmental Research Letters, 14(6). 064010. DOI : 10.1088/1748-9326/ab127c
  4. Q. Zhou, T. E. Panduro, B. J. Thorsen & K. Arnbjerg-Nielsen. (2013). Verification of flood damage modelling using insurance data. Water Sci. Technol., 68(2), 425-432. DOI : 10.2166/wst.2013.268
  5. D. Moncoulon, D. Labat, J. Ardon, E. Leblois, T. Onfroy & C. Poulard & S. Aji1 & A. Remy & A. Quantin. (2014). Analysis of French insurance market exposure to floods : a stochastic model combining river overflow and surface runoff. Natural Hazard and Earth System Science, 14, 1469-1485. DOI : 10.5194/nhess-14-2469-2014
  6. J. Leandro, S. Djordjevic, A. S. Chen, D. A. Savic & M. Stanic. (2009). Calibration of 1D/1D urban flood models with 1D/2D model results in the absence of real 1 data. Journal of Hydraulic Engineering, 135(6), 495-504. DOI : 10.1061/(ASCE)HY.1943-7900.0000037
  7. S. D. Seyoum, Z. Vojinovic, R. K. Price & S. Weesakul. (2011). Coupled 1D and Noninertia 2D Flood Inundation Model for Simulation of Urban Flooding. Journal of Hydraulic Engineering, 138(1), 23-34. DOI : 10.1061/(ASCE)HY.1943-7900.0000485
  8. P. H. Bazin & H. Nakagawa & K. Kawaike & A. Paquier. (2014). Modeling Flow Exchanges between a Street and an Underground Drainage Pipe during Urban Floods. Journal of Hydraulic Engineering, 140(10), 04014051. DOI : 10.1061/(ASCE)HY.1943-7900.0000917
  9. S. Ogras & F. Onen. (2020). Flood Analysis with HEC-RAS: A Case Study of Tigris River, Advances in Civil Engineering, Article ID 6131982. DOI : 10.1155/2020/6131982
  10. S. Patro & C. Chatterjee & S. Mohanty & R. Singh & N. S. Raghuwanshi. (2009). Flood inundation modeling using MIKE FLOOD and remote sensing data, Journal of the Indian Society of Remote Sensing, 37(1), 107-118. DOI : 10.1007/s12524-009-0002-1
  11. C. H. Lee & K. Y. Han & J. W. Noh. (2006). Development of urban inundation analysis model using dual-drainage concept. Journal of the Korean Society of Civil Engineers, 26(4B), 379-387.
  12. C. H. Lee & K. Y. Han. (2007). GIS-based urban flood inundation analysis model considering building effect. Journal of Korea Water Resource Association, 40(3), 223-236. DOI : 10.3741/JKWRA.2007.40.3.223
  13. J. Y. Lee & M. J. Nam & H. H. Kwon, & K. Y. Kim. (2016). Flood risk estimation with scenario-based, coupled river-overland hydrodynamic modeling. Journal of Korean Water Resources Association, 49(9), 773-787. DOI : 10.3741/JKWRA.2016.49.9.773
  14. M. J. Nam & J. Y. Lee & C. H. Lee. (2019). Development of Probabilistic Flood Risk Map Considering Uncertainty of Levee Break. Journal of Convergence for Information Technology, 9(11), 125-133. DOI : 10.22156/CS4SMB.2019.9.11.125
  15. M. J. Nam & J. Y. Lee & C. W. Lee & K. Y. Kim. (2017). Estimating the compound risk integrated hydrological/hydraulic/geotechnical uncertainty of levee systems. Journal of Korean Water Resources Association, 50(4), 277-288. DOI : 10.3741/JKWRA.2017.50.4.277
  16. J. D. Wang & J. J. Connor. (1975). Mathematical Modeling of Near Coastal Circulatioin, Massachusetts Institute of Technology, Department of Civil Engineering, Cambridge, Massachusetts 02109.
  17. G. Huang & G. T. Yeh. (2009). Comparative study of coupling approaches for surface water and subsurface interactions. J. Hydrol. Eng., 14(5), 453-462. DOI : 10.1061/(ASCE)HE.1943-5584.0000017
  18. A. S. Chen & J. Leandro & S. Djordjevic. (2016). Modelling sewer discharge via displacement of manhole covers during flood events using 1D/2D SIPSON/P-DWave dual drainage simulations, Urban Water Journal, 13(8). 830-840. DOI : 10.1080/1573062X.2015.1041991
  19. M. S. Islam & T. Tsujimoto. (2015). Levee Breaching Process of a River and Disaster Risk on Floodplain, American. Journal of Civil Engineering and Architecture, 3(2), 39-44, DOI : 10.12691/ajcea-3-2-1