Acknowledgement
본 논문은 KOREA HYDIRO&NUCLEAR POWER CO. LTD(No. 2018-Tech-07)의 지원을 받아 수행되었음
References
- J. Ma, Y. Ma & C. Li. (2019). Infrared and visible image fusion methods and applications: A survey. Information Fusion, (45), 153-178.
- B. B. Kang & J. Y. Kim. (2016). Anomaly diagnosis method using thermal image histogram signal characteristics. Proceedings of the Korean Urban Railway Association, 4(3), 521-528.
- K. H. Kim, S. S. Park, H. T. Lim, S. J. Lee & Y. S. Kim. (2019). Detecting leaks in old sewage pipes using thermal imaging information of an unmanned aerial system. Abstract of the Korean Society of Agricultural Engineering Conference, 159-159.
- Z. Guo, W. Liao, Y. Xiao, P. Veelaert & W. Philips. (2019). Deep learning fusion of RGB and depth images for pedestrian detection. The 30th British Machine Vision Conference (pp. 1-13). Cardiff : The BMVA.
- S. K. Lee, C. Y. Yoon, K. D. Moon, & C. G. Kim. (2020). A study on image synthesis-based training data augmentation for single-step detection method. Korean Information Processing Society, 27(1), 446-450.
- S. Ren, K. He, R. Girshick & J. Sun. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 91-99.
- W. Minkina & S. Dudzik. (2009). Infrared Thermography : Errors and Uncertainties. London : John Wiley & Sons
- P. Harvey. (n. d). ExifTool by Phil Harvey (Online). https://exiftool.org
- K. He, G. Gkioxari, P. Dollar & R. Girshick. (2017). Mask r-cnn. Proceedings of the IEEE international conference on computer vision (pp. 2961-2969). Cambridge : IEEE
- X. Wang, M. Yang, S. Zhu & Y. Lin. (2013). Regionlets for generic object detection. Proceedings of the IEEE international conference on computer vision (pp. 17-24). Cambridge : IEEE.
- H. J Kim, E. Dunn & J. M. Frahm. (2017). Learned contextual feature reweighting for image geo-localization. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3251-3260). Cambridge : IEEE.