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Abstract

Data access bias can be observed in various types of computing systems. In this paper, we characterize the 

data access bias in modern mobile computing platforms. In particular, we focus on the access bias of data 

observed at three different subsystems based on our experiences. First, we show the access bias of file data in 

mobile platforms. Second, we show the access bias of memory data in mobile platforms. Third, we show the 

access bias of web data and web servers. We expect that the characterization study in this paper will be helpful 

in the efficient management of mobile computing systems.
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1. Introduction

With the explosive growth in mobile applications and the advances in software platform technologies, 

mobile data accesses are now become essential in our lives [1-5]. People are increasingly working with their 

mobile devices, and a variety of mobile applications emerge day by day [6]. In reality, the hardware 

specification of a mobile device is similar to that of a PC [7-9]. For example, Google Pixel 5, the 2020 version 

of the Android reference phone, consists of Qualcomm Snapdragon 765G, Octa-core CPU (1 × 2.4 GHz Kryo 

475 Prime & 1 × 2.2 GHz Kryo 475 Gold & 6 × 1.8 GHz Kryo 475 Silver), Adreno 620 GPU, 8 GB LPDDR4X 

memory, and 128GB UFS 2.1 storage, which is sufficient to execute traditional desktop applications. Thus, 

we can do official works like social broadcasting, video conferencing, and stock trading with our mobile 

phones. 

As a mobile device increasingly absorbs the functionality of desktop computers, we need to characterize its 

applications and data access characteristics. Meanwhile, when we investigate data access characteristics in 

computing systems, the bias can be observed in any kind of system components [10-12]. In this paper, we 

characterize the data access bias that appears in mobile platforms. In particular, we focus on three subsystems 

based on our experiences. First, we characterize the access bias in file data. Our observations show that the top 

5-10% file data account for about 80% of total data accesses. Second, we characterize the access bias in 

memory data. Our observations show that the top 10% memory data account for 80% of total memory data 

accesses. Third, we characterize the access bias in web data and web servers. Our observations show that the 
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top 30% web data account for 80% of total web accesses. Similarly, the top 10% of web servers account for 

80% of total web accesses. We expect that the characterization in this study will be helpful in the efficient 

management of mobile platforms. 

The remainder of this paper is organized as follows. Section 2 describes the characterization result of file 

data access bias in mobile platforms. Section 3 describes the memory access bias in mobile platforms, and 

Section 4 characterizes the bias in web data accesses. Finally, Section 5 concludes this paper.

2. Access Bias in File Data

In this section, we characterize the file data access bias in mobile platforms. To collect file access traces in 

mobile phones, we utilize the strace utility, which has the ability of tracing the system calls of a process [20].

We also capture the file access trace of desktop PCs and compare the data access bias in mobile phones and 

PCs. For applications, we select Facebook, Angrybird, Twitter, and Web browser for mobile applications, and 

LibreOffice, Cscope, Firefox, and Gnuplot for PC applications. The duration of the trace collection period was 

in the range of 15-20 minutes for each application. We ran the four applications sequentially and then repeated 

them three times to see the effect of multitasking. Note that a graduate student in our research group 

participated in our trace collection process.

Figure 1 depicts the cumulative references for file data in mobile devices in comparison with those in PC 

systems. In the figure, the x-axis represents the percentage of file blocks sorted by their popularity rankings 

and the y-axis shows the cumulative accesses made by the given fraction of file blocks. As file systems store

files by the same size unit called blocks, the meaning of “block” in Figure 1 is a file block belonging to the 

files in storage. As shown in Figure 1(a), in mobile devices, the top 5-10% of file data account for 80% of total 

accesses, which is highly biased. However, in PC environments, we can see a certain biased popularity in file 

accesses, but it is not stronger than mobile systems. In particular, about top 30% of file data account for 80% 

of total accesses in PC systems. 

      

(a) mobile                                         (b) PC

Figure 1. Cumulative file access distributions for mobile and PC systems.

Figure 2 shows the file access ratio of mobile applications in terms of the access operations in comparison 

with PC environments. As shown in the figure, all mobile applications show write-intensive reference 

characteristics. In particular, the ratio of write operations is over 60%. Such high percentage of write operations 

happens as mobile applications utilize the SQLite database, which is a library used in file manipulations. This 

is different from traditional PC programs where read operations are dominant in file references [16]. As can 

be seen from the figure, the ratio of write operations in PC environments is at most 15%.
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(a) mobile                                        (b) PC

Figure 2. File access distributions for mobile and PC systems.

Figure 3 shows the access distributions of storage in mobile devices. Storage access traces in our experiment 

were extracted by the ftrace utility supported in Google Android. In this experiment, we executed 5 

applications consisting of Angry Bird, Candy Crush, File Browser, Temple Run2, and Balance 3D sequentially 

and repeated them three times. The duration of each execution was in the range of 15-20 minutes. As storage 

accesses consist of swap accesses as well as file accesses, we included all storage accesses in this graph. In 

particular, the graph plots the cumulative number of accesses in the storage of mobile devices. In the figure, 

the x-axis is the ratio of accessed data sorted by their reference count and the y-axis is the percentage of 

references for the given ratio of data. For example, 10% in the x-axis refers to the top 20% data, and the 

corresponding point in the y-axis is the percentage of storage accesses they made. As can be seen from this 

figure, the top 50% data account for 80% of total storage accesses. This means that the bias of accesses in 

mobile storage is relatively weak.

       

Figure 3. Cumulative distribution of storage accesses in mobile platform.

3. Access Bias in Memory Data

In this section, we characterize the memory references in mobile platforms. To collect memory access traces 

of Android applications, we used the Cachegrind utility of the Valgrind toolset [21]. In our experiment, we 

executed 4 mobile applications, Facebook, Game, Youtube, and Web browser. Specifically, we ran these 

applications sequentially and repeated them three times. The duration of each execution was in the range of 

15-20 minutes. Similar to file data collection, a graduate student in our research group participated in the 

memory trace collection process. Figure 4 shows the number of memory references that happens on each 
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memory data. In the figure, the red plot represents the write operation while the blue plot represents the read 

operation. As we see in the figure, a limited number of memory data account for a large fraction of the memory 

references.

Figure 4. Memory access count for each memory location in mobile platforms.

To investigate the characteristics of write operations in memory of mobile systems, we plot the distributions 

of write operations as the data ranks increase in Figure 5(a). In the figure, the x-axis is the rank of data sorted 

by the number of write operations that occurred on that data and the y-axis is the number of write operations 

on that ranking. As we see from this figure, the write operations made by mobile systems are excessively 

biased. In particular, the top 10% data account for 80% of total write operations, which implies that write 

operations in the memory of mobile systems are mostly generated by a certain hot data. Note that this is 

different to PC environments where the top 50% data typically account for 80% of write operations [17]. 

Figure 5(b) shows the memory locations that have been accessed as time progresses. In this figure, the x-

axis is the logical time, which is increased by 1 for each memory access and the y-axis is the memory location, 

which is represented as page numbers. In this figure, the blue plot represents the read operation and the red 

plot represents the write operation. As shown in the figure, write operations are biased to a certain hot memory 

locations and they are consistently accessed as time progresses. The vertical line in the figure is the time where 

the application finishes its launch. As shown in the figure, the characteristics of memory data accesses do not 

change significantly even after the application finishes its launch.

      

(a) Write count distributions                     (b) Accessed pages over time

Figure 5. Access bias in smartphone memory data.
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4. Access Bias in Web Data

In this section, we characterize the access bias in web data accesses [13, 14]. We used the trace captured by 

the proxy server at KREN (Korea Education Network) [19], which acts as agents on behalf of users to send 

HTTP requests to web servers. The trace collection period was 6 days and the total number of web pages and 

web servers in the trace were 1,308,730 and 988,036, respectively.

Apparently, not all web data are evenly accessed. Figure 6(a) shows the frequency of a web data that has 

been referenced versus the popularity rank of the web data. In this figure, the x and y axes are all in the log 

scale. As shown in the figure, accesses of web data are excessively biased to a certain hot web data. In particular, 

the graph seems to be a straight line, which implies that the reference probability of a web data whose 

popularity rank is i is proportional to 1/ia, where a is the slope of the line. We call this distribution a Zipf 

distribution, which is excessively biased [15, 18]. In Figure 6(b), we plot the cumulative references versus the 

ratio of the web data referenced. Web data in the x-axis are sorted by their reference count. This graph shows 

that the top 10% web data account for 70% of web accesses and the top 30% web data account for 80% of web 

accesses. That is, references for web data are significantly biased to a certain hot data, which can be modeled 

by a skewed distribution of Zipf. 

Let us now consider the bias in web sites. Figure 7(a) shows the reference count of web sites versus the rank 

of the web sites, where rank 1 is the most popular web site. In this figure, both x and y axes are in log scale. 

Similar to the web data characterization, references are significantly biased to a certain hot web sites. The 

distribution can also be modeled by a Zipf distribution. Figure 7(b) shows the cumulative references of web 

sites versus the ratio of the web sites visited. The web sites in the x-axis are sorted by the reference counts. 

This figure shows that the top 10% web sites account for 80% of web references and the top 30% web sites 

account for 90% of web references.

     
(a) Frequency versus ranking                 (b) Cumulative distributions

Figure 6. Access bias in Web data.
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(a) Frequency versus ranking                 (b) Cumulative distributions

Figure 7. Access bias in Web sites.

5. Conclusion

In this paper, we characterized the data access bias in mobile platforms. In particular, we analyzed the bias 

in web data references, file data references, and memory data references. Our analysis showed that the top 5-

10% file data account for 80% of references, the top 10% memory data account for 80% of references, and top 

30% web data account for 80% of references. We expect that the characterization result in this paper will 

provide implications and guide for the efficient management of mobile systems.
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