DOI QR코드

DOI QR Code

The Empty Set as a Mathematical Object

수학적 대상으로서의 공집합

  • Received : 2021.11.25
  • Accepted : 2021.12.22
  • Published : 2021.12.31

Abstract

This study investigated the empty set which is one of the mathematical objects. We inquired some misconceptions about empty set and the background of imposing empty set. Also we studied historical background of the introduction of empty set and the axiomatic system of Set theory. We investigated the nature of mathematical object through studying empty set, pure conceptual entity. In this study we study about the existence of empty set by investigating Alian Badiou's ontology known as based on the axiomatic set theory. we attempted to explain the relation between simultaneous equations and sets. Thus we pondered the meaning of the existence of empty set. Finally we commented about the thoughts of sets from a different standpoint and presented the meaning of axiomatic and philosophical aspect of mathematics.

수학적 대상 중 하나인 공집합에 대하여 고찰해본다. 공집합과 관련된 학생들의 다양한 오개념과 그 원인을 살펴보고 역사적 공집합의 도입배경과 이와 관련된 집합론의 공리계를 살펴본다. 순수한 개념적 대상인 공집합을 통하여 수학적 대상의 속성을 알아보고, 공리적 집합론에 기반하였다고 알려진 현대 철학자 알랭 바디우(Alian Badiou)의 존재론을 살펴본다. 이상의 논의를 바탕으로 연립방정식의 해와 해집합을 집합을 통해 설명하고 이와 관련하여 공집합의 존재성이 갖는 의미를 고찰하여본다. 이러한 관점으로 집합적 사고를 재해석해보고, 수학의 공리적 철학적 측면이 갖는 의의를 제시한다.

Keywords

References

  1. Go, S. E. et al. (2018). (High school) Mathematics. Seoul: Sinsago.
  2. Ministry of Education. (2015). Mathematics curriculum. Seoul: Author.
  3. Kwon, O. N. et al. (2018). (High school) Mathematics. Seoul: Kyohaksa.
  4. Kim, W. K. et al. (2018). (High school) Mathematics. Seoul: Visang.
  5. Nam, K. H. (2013). Platon. Seoul: Acanet.
  6. Lew, H. C. et al. (2018). (High school) Mathematics. Seoul: Chunjae.
  7. Park, K. S. et al. (2018a). (Middle school) Mathematics 1. Seoul: Dong-a.
  8. Park, K. S. et al. (2018b). (High school) Mathematics. Seoul: Dong-a.
  9. Park, K. S. et al. (2019). (Middle school) Mathematics 2. Seoul: Dong-a.
  10. Park, S. (2006) Invitation to the world of mathematics. Seoul: SNUPress.
  11. Bae, J. S. et al. (2018). (High school) Mathematics. Seoul: Kumsung.
  12. Paek, D. H., & Yi, J. (2011). Symbol statements in middle school mathematics textbooks : how to read and understand them? Journal of Educational Research in Mathematics, 21(2), 165-180.
  13. Seo, B. (2017). The Analytical study of the historical process of mathematics curriculum in Korea. BD18070008. Korea foundation for the advancement of science & creativity.
  14. Seo, Y. S. (2006). The problem of the void in philosophy of Badiou. The Journal of Contemporary Psychoanalysis, 8(2), 95-114.
  15. Seo, Y. S. (2011). Etre, verite et sujet dans la philosophie d'Alain Badiou: autour de L'etre et l'evenement, Sogang Journal of Philosophy, 27, 79-115. https://doi.org/10.17325/sgjp.2011.27..79
  16. Ryou, M., & Choi, Y. (2015). The diorism in proposition I-22 of 「Euclid Elements」 and the existence of mathematical objects, Journal of Educational Research in Mathematics, 25(3), 367-379.
  17. Yoo, Y. J. (2012). Secondary Mathematics Textbook Research. Seoul: Kyungmoonsa.
  18. Lee, K., Park, K. & Yim, J.(2002). A Critical review on the concept of set as a school mathematics topic. Journal of Educational Research in Mathematics, 12(1), 125-143.
  19. Lee, J. W. (1998). Historical background and development of geometry. Seoul: Kyungmoonsa.
  20. Lee, J. Y. et al. (2018). (High school) Mathematics. Seoul: Chunjae.
  21. Im, J. D. (1992). The basis of set theory. Seoul:
  22. Chang, T. S. (2017a). Deleuze and Badiou's Concept of Multiplicity : From the Dispute of the Two Philosophers, Journal of The Society of philosophical studies. 117, 169-189. https://doi.org/10.23908/JSPS.2017.06.117.169
  23. Chang, T. S. (2017b). Zero, one, many - Alain Badiou's conception of multiple, Korean Journal of Philosophy. 131, 151-170. https://doi.org/10.18694/KJP.2017.05.131.151
  24. Jeong, J. H. (2012) Proofmood, a computer logic system. Seoul: Kyungmoonsa.
  25. Hong, K. S. (2006). Letre comme multiple pur et la verite comme un. Korean Society for Social Philosophy, (12), 241-262.
  26. Hong, S. et al. (2018). (High school) Mathematics. Seoul: Jihaksa.
  27. Hwang, S. et al. (2018). (High school) Mathematics. Seoul: Mirae N.
  28. Badiou, Alain. (1988). L'etre et l'evenement. Paris: Seuil, 조형준 역(2013), 존재와 사건 : 사랑과 예술과 과학과 정치 속에서, 서울 : 새물결.
  29. Bagni, T. (2006). Some cognitive difficulties related to the representations of two major concepts of set theory. Educational Studies in Mathematics, 62(3), 259-280. https://doi.org/10.1007/s10649-006-8545-3
  30. Devlin, K. (2012). The joy of sets: fundamentals of contemporary set theory. Springer Science & Business Media.
  31. Eves, H. (1994). 수학의 위대한 순간들. (허민, 오혜영 역), 서울: 경문사. (영어 원작은 1980년 출판).
  32. Fischbein, & Baltsan (1998). The mathematical concept of set and the collection model, Educational Studies in Mathematics, 37(1), 1-22. https://doi.org/10.1023/A:1003421206945
  33. Kolitsoe Moru, E., & Qhobela, M. (2013). Secondary school teachers' pedagogical content knowledge of some common student errors and misconceptions in sets. African Journal of Research in Mathematics, Science and Technology Education, 17(3), 220-230. https://doi.org/10.1080/10288457.2013.848534
  34. Lin, Y., & Lin, S. (1974). Set Theory - An intuitive approach. Boston : Houbhton Mifflin Company.
  35. Pinter, C. (1986). Set theory. (Addison - Wesley series in mathematics). 서울: 연합출판.
  36. Tiles, M. (2004). The philosophy of set theory: an historical introduction to Cantor's paradise. Courier Corporation.
  37. Wegner, S. A. (2014). A Workshop for High School Students on Naive Set Theory. European Journal of Science and Mathematics Education, 2(4), 193-201. https://doi.org/10.30935/scimath/9411
  38. Zazkis, R., & Gunn, C. (1997). Sets, subsets, and the empty set: students' constructions and mathematical conventions. Journal of Computers in Mathematics and Science Teaching, 16, 133-169.