References
- Go, S. E. et al. (2018). (High school) Mathematics. Seoul: Sinsago.
- Ministry of Education. (2015). Mathematics curriculum. Seoul: Author.
- Kwon, O. N. et al. (2018). (High school) Mathematics. Seoul: Kyohaksa.
- Kim, W. K. et al. (2018). (High school) Mathematics. Seoul: Visang.
- Nam, K. H. (2013). Platon. Seoul: Acanet.
- Lew, H. C. et al. (2018). (High school) Mathematics. Seoul: Chunjae.
- Park, K. S. et al. (2018a). (Middle school) Mathematics 1. Seoul: Dong-a.
- Park, K. S. et al. (2018b). (High school) Mathematics. Seoul: Dong-a.
- Park, K. S. et al. (2019). (Middle school) Mathematics 2. Seoul: Dong-a.
- Park, S. (2006) Invitation to the world of mathematics. Seoul: SNUPress.
- Bae, J. S. et al. (2018). (High school) Mathematics. Seoul: Kumsung.
- Paek, D. H., & Yi, J. (2011). Symbol statements in middle school mathematics textbooks : how to read and understand them? Journal of Educational Research in Mathematics, 21(2), 165-180.
- Seo, B. (2017). The Analytical study of the historical process of mathematics curriculum in Korea. BD18070008. Korea foundation for the advancement of science & creativity.
- Seo, Y. S. (2006). The problem of the void in philosophy of Badiou. The Journal of Contemporary Psychoanalysis, 8(2), 95-114.
- Seo, Y. S. (2011). Etre, verite et sujet dans la philosophie d'Alain Badiou: autour de L'etre et l'evenement, Sogang Journal of Philosophy, 27, 79-115. https://doi.org/10.17325/sgjp.2011.27..79
- Ryou, M., & Choi, Y. (2015). The diorism in proposition I-22 of 「Euclid Elements」 and the existence of mathematical objects, Journal of Educational Research in Mathematics, 25(3), 367-379.
- Yoo, Y. J. (2012). Secondary Mathematics Textbook Research. Seoul: Kyungmoonsa.
- Lee, K., Park, K. & Yim, J.(2002). A Critical review on the concept of set as a school mathematics topic. Journal of Educational Research in Mathematics, 12(1), 125-143.
- Lee, J. W. (1998). Historical background and development of geometry. Seoul: Kyungmoonsa.
- Lee, J. Y. et al. (2018). (High school) Mathematics. Seoul: Chunjae.
- Im, J. D. (1992). The basis of set theory. Seoul:
- Chang, T. S. (2017a). Deleuze and Badiou's Concept of Multiplicity : From the Dispute of the Two Philosophers, Journal of The Society of philosophical studies. 117, 169-189. https://doi.org/10.23908/JSPS.2017.06.117.169
- Chang, T. S. (2017b). Zero, one, many - Alain Badiou's conception of multiple, Korean Journal of Philosophy. 131, 151-170. https://doi.org/10.18694/KJP.2017.05.131.151
- Jeong, J. H. (2012) Proofmood, a computer logic system. Seoul: Kyungmoonsa.
- Hong, K. S. (2006). Letre comme multiple pur et la verite comme un. Korean Society for Social Philosophy, (12), 241-262.
- Hong, S. et al. (2018). (High school) Mathematics. Seoul: Jihaksa.
- Hwang, S. et al. (2018). (High school) Mathematics. Seoul: Mirae N.
- Badiou, Alain. (1988). L'etre et l'evenement. Paris: Seuil, 조형준 역(2013), 존재와 사건 : 사랑과 예술과 과학과 정치 속에서, 서울 : 새물결.
- Bagni, T. (2006). Some cognitive difficulties related to the representations of two major concepts of set theory. Educational Studies in Mathematics, 62(3), 259-280. https://doi.org/10.1007/s10649-006-8545-3
- Devlin, K. (2012). The joy of sets: fundamentals of contemporary set theory. Springer Science & Business Media.
- Eves, H. (1994). 수학의 위대한 순간들. (허민, 오혜영 역), 서울: 경문사. (영어 원작은 1980년 출판).
- Fischbein, & Baltsan (1998). The mathematical concept of set and the collection model, Educational Studies in Mathematics, 37(1), 1-22. https://doi.org/10.1023/A:1003421206945
- Kolitsoe Moru, E., & Qhobela, M. (2013). Secondary school teachers' pedagogical content knowledge of some common student errors and misconceptions in sets. African Journal of Research in Mathematics, Science and Technology Education, 17(3), 220-230. https://doi.org/10.1080/10288457.2013.848534
- Lin, Y., & Lin, S. (1974). Set Theory - An intuitive approach. Boston : Houbhton Mifflin Company.
- Pinter, C. (1986). Set theory. (Addison - Wesley series in mathematics). 서울: 연합출판.
- Tiles, M. (2004). The philosophy of set theory: an historical introduction to Cantor's paradise. Courier Corporation.
- Wegner, S. A. (2014). A Workshop for High School Students on Naive Set Theory. European Journal of Science and Mathematics Education, 2(4), 193-201. https://doi.org/10.30935/scimath/9411
- Zazkis, R., & Gunn, C. (1997). Sets, subsets, and the empty set: students' constructions and mathematical conventions. Journal of Computers in Mathematics and Science Teaching, 16, 133-169.