DOI QR코드

DOI QR Code

Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector

분산 반사경 기반 패브리-페로 필터를 이용한 비분산적외선 CO2 센서의 감지 특성

  • Do, Nam Gon (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Junyeop (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Dong Geon (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Kong, Seong Ho (School of Electrical Engineering, Kyungpook National University) ;
  • Jung, Daewoong (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
  • 도남곤 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 이준엽 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 정동건 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 공성호 (경북대학교 전자전기공학부) ;
  • 정대웅 (한국생산기술연구원 첨단메카트로닉스연구그룹)
  • Received : 2021.10.19
  • Accepted : 2021.11.26
  • Published : 2021.11.30

Abstract

Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의지원을받아수행된연구임(2020-DD-UP-0348). 이 논문은 2020년도 정부(대구시)의 재원으로 대구테크노파크의 지원을 받아 수행된 연구임(202008105). 이 논문은 한국생산기술연구원 기관주요사업의 지원으로 수행한 연구임.

References

  1. F. Vega, F. M. Baena-Moreno, L. M. G. Fernandez, E. Portillo, B. Navarrete, and Z. Zhang, "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale", Appl. Energy, Vol. 260, pp. 114-313, 2020.
  2. A. F. Perez-Cadenas, C. H. Ros,, S. Morales-Torres, M. Perez-Cadenas,, P. J. Kooyman,, C. Moreno-Castilla, and F. Kapteijn, "Metal-doped carbon xerogels for the electro-catalytic conversion of CO 2 to hydrocarbons", Carbon N. Y, Vol. 56, pp. 324-331, 2013. https://doi.org/10.1016/j.carbon.2013.01.019
  3. B. Liao, Q. Wei, K. Wang, and Y. Liu, "Study on CuO±BaTiO 3 semiconductor CO 2 sensor", Sens. Actuators, Vol. 80, pp. 208-214, 2001. https://doi.org/10.1016/S0925-4005(01)00892-9
  4. M. Febrina, E. Satria, M. Djamal, W. Srigutomo, and M. Liess, "Development of a simple CO2 sensor based on the thermal conductivity detection by a thermopile", Meas. J. Int. Meas. Confed, Vol. 133, pp. 139-144, 2019.
  5. T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction", Sens. Actuators, B Chem., Vol. 231, pp. 529-538, 2016. https://doi.org/10.1016/j.snb.2016.03.040
  6. L. Fleming, D. Gibson, S. Song, C. Li, and S. Reid, "Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings", Surf. Coat. Technol., Vol. 336, pp. 9-16, 2018. https://doi.org/10.1016/j.surfcoat.2017.09.033
  7. R. Frodl and T. Tille, "A High-Precision NDIR CO2 gas sensor for automotive applications", IEEE Sens. J. 6.6, pp. 1697-1705, 2006. https://doi.org/10.1109/JSEN.2006.884440
  8. R. Bogue, "Detecting gases with light: A review of optical gas sensor technologies", Sens. Rev., Vol. 35, pp. 133-140, 2015. https://doi.org/10.1108/SR-09-2014-696
  9. L. Kocsis, P. Herman, and A. Eke, "The modified Beer-Lambert law revisited", Phys. Med. Biol., Vol. 51, pp. N91(1)-N91(51), 2006. https://doi.org/10.1088/0031-9155/51/5/N02
  10. J. Lee and S. H. Lim, "Review on Sensor Technology to Detect Toxic Gases", J. Sens. Sci. Technol., Vol. 24, No. 5, pp.311-318, 2015. https://doi.org/10.5369/JSST.2015.24.5.311
  11. J. Kruger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, and W. Kautek, "Single-and multi-pulse femtosecond laser ablation of optical filter materials", Appl. Surf. Sci., Vol. 208, pp.233-237, 2003. https://doi.org/10.1016/S0169-4332(02)01389-2
  12. R. L. Gentilman, E. A. Maguire, H. S. Starrett, T. M. Hartnett, and H. P. Kirchner, "Strength and transmittance of sapphire and strengthened sapphire", J. Am. Ceram. Soc., Vol. 64, pp.C-116-C-127, 1981.
  13. N. J. Trappeniers,, R. Vetter, and H. A. R. De Bruin, "The pressure coefficient of the infra-red refractive index of germanium", Phys., Vol. 45, No. 4, pp.619-625, 1970. https://doi.org/10.1016/0031-8914(70)90074-1
  14. S. J. Jung, B. J. Kim, and M. Shin, "Low-refractive-index and high-transmittance silicon oxide with a mixed phase of n-type microcrystalline silicon as intermediate reflector layers for tandem solar cells", Sol. Energy. Mater. Sol. Cells, Vol. 121, pp.1-7, 2014. https://doi.org/10.1016/j.solmat.2014.03.002
  15. Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, "Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection", Sens. Actuators B: Chemical, Vol. 221, pp.1094-1103, 2015. https://doi.org/10.1016/j.snb.2015.07.061
  16. N. G. Do, J. Lee, D. G. Jung, S. H. Kong, and D. Jung, "Si/SiO 2 Multilayer-based Fabry-Perot Filter for 4.26? Filtering in Carbon Dioxide Detection", J. Sens. Sci. Technol., Vol. 30, No. 1, pp. 56-60, 2021. https://doi.org/10.46670/JSST.2021.30.1.56
  17. N. G. Do, J. Lee, D. G. Jung, S. H. Kong, and D. Jung . "Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor", J. Sens. Sci. Technol., Vol. 30, No. 4, pp. 250-254, 2021. https://doi.org/10.46670/JSST.2021.30.4.250
  18. M. Cho, J. H. Seo, D. Zhao, J. Lee, K. Xiong, X. Yin, Y. Liu, S. C. Liu, M. Kim, T. J. Kim, X. Wang, W. Zhou, and Z. Ma,"Amorphous Si/SiO 2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes", J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., Vol. 34, No. 4, pp. 040601(1)-040601(34), 2016.