DOI QR코드

DOI QR Code

GAN-based Data Augmentation methods for Topology Optimization

위상 최적화를 위한 생산적 적대 신경망 기반 데이터 증강 기법

  • Lee, Seunghye (Dept. of Architectural Engineering, Sejong University) ;
  • Lee, Yujin (Dept. of Architectural Engineering, Sejong University) ;
  • Lee, Kihak (Dept. of Architectural Engineering, Sejong University) ;
  • Lee, Jaehong (Dept. of Architectural Engineering, Sejong University)
  • 이승혜 (세종대학교 건축공학과) ;
  • 이유진 (세종대학교 건축공학과) ;
  • 이기학 (세종대학교 건축공학과) ;
  • 이재홍 (세종대학교 건축공학과)
  • Received : 2021.08.25
  • Accepted : 2021.09.16
  • Published : 2021.12.15

Abstract

In this paper, a GAN-based data augmentation method is proposed for topology optimization. In machine learning techniques, a total amount of dataset determines the accuracy and robustness of the trained neural network architectures, especially, supervised learning networks. Because the insufficient data tends to lead to overfitting or underfitting of the architectures, a data augmentation method is need to increase the amount of data for reducing overfitting when training a machine learning model. In this study, the Ganerative Adversarial Network (GAN) is used to augment the topology optimization dataset. The produced dataset has been compared with the original dataset.

Keywords

Acknowledgement

이 논문은 행정안전부장관의 지진방재내진분야 전문인력 양성사업으로 지원되었습니다.

References

  1. Salehi, H., & Burgueno, R., "Emerging artificial intelligence methods in structural engineering", Engineering structures, Vol.171, pp.170~189, 2018 https://doi.org/10.1016/j.engstruct.2018.05.084
  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y., "Generative adversarial nets", Advances in neural information processing systems, Vol.27, 2014
  3. Aggarwal, A., Mittal, M., & Battineni, G., "Generative adversarial network: An overview of theory and applications", International Journal of Information Management Data Insights, 100004, 2021
  4. Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J., "A review on generative adversarial networks: Algorithms, theory, and applications", arXiv preprint arXiv:2001.06937, 2021
  5. Shen, M. H. H., & Chen, L., "A new CGAN technique for constrained topology design optimization", arXiv preprint arXiv:1901.07675, 2019
  6. Rawat, S., & Shen, M. H., "A novel topology design approach using an integrated deep learning network architecture", arXiv preprint arXiv:1808.02334, 2018
  7. Rawat, S., & Shen, M. H. H., "A novel topology optimization approach using conditional deep learning", arXiv preprint arXiv:1901.04859, 2019
  8. Oh, S., Jung, Y., Kim, S., Lee, I., & Kang, N., "Deep generative design: Integration of topology optimization and generative models", Journal of Mechanical Design, Vol.141, No.11, 2019
  9. Bendsoe, M. P., & Sigmund, O., "Topology optimization: theory, methods, and applications", Springer Science & Business Media, 2013
  10. M. Arjovsky, S. Chintala, and L. Bottou., "Wasserstein gan", arXiv preprint arXiv:1701.07875, 2017.
  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A., "Improved training of wasserstein gans", arXiv preprint arXiv:1704.00028, 2017
  12. Radford, A., Metz, L., & Chintala, S., "Unsupervised representation learning with deep convolutional generative adversarial networks", arXiv preprint arXiv:1511.06434, 2015
  13. Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., & Paul Smolley, S., "Least squares generative adversarial networks", In Proceedings of the IEEE international conference on computer vision, pp. 2794-2802, 2017
  14. Mirza, M., & Osindero, S., "Conditional generative adversarial nets", arXiv preprint arXiv:1411.1784, 2014
  15. Sigmund, O., "A 99 line topology optimization code written in Matlab", Structural and multidisciplinary optimization, Vo.21, No.2, pp.120-127, 2001 https://doi.org/10.1007/s001580050176
  16. Sigmund, O., "Morphology-based black and white filters for topology optimization", Structural and Multidisciplinary Optimization, Vol.33, No.4-5, pp.401-424, 2007 https://doi.org/10.1007/s00158-006-0087-x