DOI QR코드

DOI QR Code

Simulation of Leggett-Garg Inequalities Using a Heralded-single-photon Source

예고된 단일 광자 광원을 이용한 레겟-가르그 부등식 모사

  • Kim, Su Hyun (Department of Physics, Pusan National University) ;
  • Moon, Han Seb (Department of Physics, Pusan National University)
  • Received : 2020.12.02
  • Accepted : 2020.12.16
  • Published : 2021.02.25

Abstract

We have experimentally simulated the violation of the Leggett-Garg inequality (LGI) using a heralded-single-photon source via spontaneous parametric down-conversion (SPDC) in a periodically poled potassium titanyl phosphate (PPKTP) crystal. We measured the polarization fringe as a function of the angle of the linear polarization of the photons, and analyzed the LGI according to n measurement. Simulation results for LGI based on the polarization of the heralded single photon were in good agreement with theoretical calculations.

본 논문에서는 주기적 분극된 비선형 결정(periodically poled potassium titanyl phosphate; PPKTP)에서 자발매개하향변환(spontaneous parametric down conversion; SPDC)과정으로 생성된 예고된 단일 광자 광원을 이용하여 레겟-가르그 부등식(Leggett-Garg inequality; LGI)의 위배를 실험적으로 모사하였다. 생성된 광자의 편광 방향에 따라서 편광된 광자 수를 측정하여 n-측정수에 따른 레겟-가르그 부등식을 모사하였다. 단일 광자의 편광 기반 LGI에 대한 실험 결과는 이론적인 계산 결과와 일치하는 것을 확인하였다.

Keywords

Acknowledgement

이 연구는 부산대학교 기본연구지원사업(2년)에 의하여 수행되었음.

References

  1. A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935). https://doi.org/10.1103/PhysRev.47.777
  2. J. S. Bell, "On the Einstein Podolsky Rosen paradox," Physics 1, 195-200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
  3. W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, "Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes," Phys. Rev. Lett. 119, 010402 (2017). https://doi.org/10.1103/physrevlett.119.010402
  4. J. Park, H. Kim, and H. S. Moon, "Polarization-entangled photons from a warm atomic ensemble using a Sagnac interferometer," Phys. Rev. Lett. 122, 143601 (2019). https://doi.org/10.1103/physrevlett.122.143601
  5. E. Schrodinger, "Die gegenwartige Situation in der Quantenmechanik," Naturwissenschaften 23, 823-828 (1935). https://doi.org/10.1007/BF01491914
  6. A. J. Leggett and A. Garg, "Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?" Phys. Rev. Lett. 54, 857-860 (1985). https://doi.org/10.1103/PhysRevLett.54.857
  7. R. F. Werner, "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model," Phys. Rev. A 40, 4277-4281 (1989). https://doi.org/10.1103/physreva.40.4277
  8. M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O'Brien, A. G. White, and G. J. Pryde, "Violation of the Leggett-Garg inequality with weak measurements of photons," Proc. Natl. Acad. Sci. U.S.A. 108, 1256-1261 (2011). https://doi.org/10.1073/pnas.1005774108
  9. C. Emary, N. Lambert, and F. Nori, "Leggett-Garg inequalities," Rep. Prog. Phys. 77, 016001 (2014). https://doi.org/10.1088/0034-4885/77/1/016001
  10. Y. Aharonov and L. Vaidman, "Properties of a quantum system during the time interval between two measurements," Phys. Rev. A 41, 11-20 (1990). https://doi.org/10.1103/PhysRevA.41.11