DOI QR코드

DOI QR Code

CNN Based Face Tracking and Re-identification for Privacy Protection in Video Contents

비디오 컨텐츠의 프라이버시 보호를 위한 CNN 기반 얼굴 추적 및 재식별 기술

  • Park, TaeMi (Department of Electronics Engineering, Chungbuk University) ;
  • Phu, Ninh Phung (Department of Electronics Engineering, Chungbuk University) ;
  • Kim, HyungWon (Department of Electronics Engineering, Chungbuk University)
  • Received : 2020.10.31
  • Accepted : 2020.12.23
  • Published : 2021.01.31

Abstract

Recently there is sharply increasing interest in watching and creating video contents such as YouTube. However, creating such video contents without privacy protection technique can expose other people in the background in public, which is consequently violating their privacy rights. This paper seeks to remedy these problems and proposes a technique that identifies faces and protecting portrait rights by blurring the face. The key contribution of this paper lies on our deep-learning technique with low detection error and high computation that allow to protect portrait rights in real-time videos. To reduce errors, an efficient tracking algorithm was used in this system with face detection and face recognition algorithm. This paper compares the performance of the proposed system with and without the tracking algorithm. We believe this system can be used wherever the video is used.

최근 유튜브와 같이 영상 콘텐츠를 보거나 제작하는 것에 관한 관심이 급증하고 있습니다. 그러나 개인 정보 보호 기술이 없이 동영상을 제작하게 되면, 출연을 원하지 않는 사람들이 공개적으로 노출되어 개인 정보 보호권을 침해할 수 있습니다. 본 논문은 이러한 문제를 해결하기 위해 얼굴을 식별하여 특정한 얼굴만 화면에 나오고 그 외에 다른 얼굴들은 Gaussian blur filter를 이용하여 흐리게 하여서 초상권을 보호하는 기술을 제안합니다. 이 논문의 핵심은 실시간 비디오에서 인물의 초상권을 보호하기 위한 주요 기술인 얼굴 식별 기술의 정확도를 높이기 위한 노력입니다. 본 논문은 얼굴 식별의 정확도를 높이기 위하여 추적 알고리즘을 사용하였으며 실시간 비디오에 적용하기 위하여 알고리즘을 변경하였습니다. 이 논문에서는 추적 알고리즘이 있는 경우와 없는 경우를 비교하여 결과를 보여줍니다.

Keywords

References

  1. F. Wang, Chen C. Li, S. Huang, Y. Chen, C. Qian, and C. C. Loy, "The devil of face recognition is in the noise," Proceedings of the European Conference on Computer Vision (ECCV), vol. 11213, pp. 780-795, 2018. doi: 10.1007/978-3-030-01240-3_47.
  2. I. Masi, Y. Wu, T. Hassner, and P. Natarajan, "Deep Face Recognition: A Survey," 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 471-478, 2019. doi: 10.1109/SIBGRAPI.2018.00067.
  3. Y. Kortli, M. Jridi, A. Al Falou, and M. Atri, "Face recognition systems: A survey," Sensors (Switzerland), vol. 20, no. 2, 2020. doi: 10.3390/s20020342.
  4. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, "Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks," IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1499-1503, 2016. doi: 10.1109/LSP.2016.2603342.
  5. S. Balaban, "Deep learning and face recognition: the state of the art," Biometric and Surveillance Technology for Human and Activity Identification XII, vol. 9457, p. 94570B, 2015. doi: 10.1117/12.2181526.
  6. F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815-823, 2015. doi: 10.1109/CVPR.2015.7298682.
  7. N. Wojke, A. Bewley, and D. Paulus, "Simple online and realtime tracking with a deep association metric," 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645-3649, 2017. doi: 10.1109/ICIP.2017.8296962.
  8. F. Ahmad, A. Najam, and Z. Ahmed, "Image-based Face Detection and Recognition: 'State of the Art'," pp. 3-6, 2013. [Internet]. Available: http://arxiv.org/abs/1302.6379.
  9. Y. Shi and A. Jain, "Probabilistic face embeddings," 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6901-6910, 2019. doi: 10.1109/ICCV.2019. 00700.
  10. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, "VGGFace2: A dataset for recognising faces across pose and age," 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67-74, 2018. doi: 10.1109/FG.2018.00020.