DOI QR코드

DOI QR Code

슬링거 연소기 회전연료노즐의 유량과 회전수에 따른 분무특성에 대한 실험적 연구

An Experimental Study on the Spray Characteristics of a Rotating Fuel Nozzle of a Slinger Combustor for Different Flow Rates and Rotating Speeds

  • Shim, Hyeon-Seok (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Bae, Jonggeun (Department of Mechanical System Engineering, Jeonbuk National University) ;
  • Kim, Jupyoung (Aerospace R&D Center, Hanwha Aerospace) ;
  • Kim, Shaun (Aerospace R&D Center, Hanwha Aerospace) ;
  • Kim, Donghyun (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Ryu, Gyongwon (Aerospace Technology Research Institute, Agency for Defense Development)
  • 투고 : 2021.06.01
  • 심사 : 2021.07.21
  • 발행 : 2021.08.31

초록

슬링거 연소기 회전연료노즐의 유량과 회전수의 변화에 따른 분무 특성을 관측하기 위한 실험적 연구를 수행하였다. 물 공급장치, 고속 회전모터, 회전연료노즐, 시험용 챔버로 구성된 분무 시험리그를 구성하였으며, 고속카메라와 고출력 광원을 사용하여 회전연료노즐 오리피스로부터 토출되는 물의 분무를 가시화하였다. 실험 결과 유량이 감소하고 회전수가 증가할수록 미립화가 향상됨을 확인하였다. 분무 특성 모드와 성능함수로 구성된 맵을 도출한 결과, 기체의 공기역학적 Weber 수와 액체-기체 모멘텀 플럭스 비는 액체의 주 분열 특성과 관련이 있으며, 액체-기체 모멘텀 플럭스 비와 Rossby 수는 액체 분출 모드와 밀접한 상관관계를 가짐을 확인하였다.

An experimental study was conducted to observe the spray characteristics for different flow rates and rotating speeds of a rotating fuel nozzle of a slinger combustor. The water spray ejected from the nozzle orifice was visualized using a high-speed camera and a light source. It was confirmed that the atomization was improved, as the flow rate decreased and rotating speed increased. The characteristic maps for the spray characteristics and performance parameters showed that the aerodynamic Weber number and the liquid-air momentum flux ratio were associated with the liquid primary breakup, and the liquid-air momentum flux ratio and Rossby number were closely correlated with the liquid ejection mode.

키워드

참고문헌

  1. NREC, The design and development of gas turbine combustors, Northern Research and Engineering Corporation, White River Junction, V.T., U.S.A., 1980.
  2. Lefebvre, A.H., Ballal, D.R. and Bahr, D.W., Gas Turbine Combustion: Alternative Fuels and Emissions, CRC Press, Boca Raton, F.L., U.S.A., 2010.
  3. Morishita, T., "A Development of the Fuel Atomizing Device Utilizing High Rotational Speed," ASME Gas Turbine Conference & Products Show, Houston, T.X., U.S.A., 81-GT-180, Mar. 1981.
  4. Dahm, W.J.A., Patel, P.R. and Lerg, B.H., "Visualization and Fundamental Analysis of Liquid Atomization by Fuel Slingers in Small Gas Turbine Engines," 32nd AIAA Fluid Dynamics Conference and Exhibit, St. Louis M.O., U.S.A., AIAA 2002-3183, Jun. 2002.
  5. Choi, S.M. and Jang, S., "Spray Behavior of the Rotary Atomizer with In-Line Injection Orifice," Atomization and Sprays, Vol. 10, No. 10, 2010.
  6. Rezayat, S. and Farshchi, M., "Spray Formation by a Rotary Atomizer Operating in the Coriolis-induced Stream-mode Injection," Atomization and Sprays, Vol. 29, No. 10, pp. 937-963, 2020. https://doi.org/10.1615/atomizspr.2020031577
  7. Broumand, M. and Birouk, M., "Liquid Jet in a Subsonic Gaseous Crossflow: Recent Progress and Remaining Challenges," Progress in Energy and Combustion Science, Vol. 57, pp. 1-29, 2016. https://doi.org/10.1016/j.pecs.2016.08.003
  8. Lee, D.H., Choi, H.K., Choi, S.M., You, G.W. and Huh, H.I., "The Atomization Mechanism and Spray Characteristics of Drum Type Rotary Atomizer," Journal of the Korean Society of Propulsion Engineers, Vol. 12, No. 2, pp. 57-65, 2008.
  9. Mazallon, J., Dai, Z. and Faeth, G.M., "Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows," Atomization Sprays, Vol. 9, pp. 291-311, 1999. https://doi.org/10.1615/AtomizSpr.v9.i3.40
  10. Sahu, S., Chakraborty, A. and Maurya, D., "Coriolis-induced Liquid Breakup and Spray Evolution in a Rotary Slinger Atomizer: Experiments and Analysis," International Journal of Multiphase Flow, Vol. 135, 103532 (22 pages), 2021. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103532