DOI QR코드

DOI QR Code

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector

압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구

  • Cho, Janghee (Department of Smart Drone Convergence, Korea Aerospace University) ;
  • Lee, Donghee (Department of Smart Drone Convergence, Korea Aerospace University) ;
  • Kim, Sulhee (Department of Smart Drone Convergence, Korea Aerospace University) ;
  • Lee, Donggeun (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Moon, Heejang (School of Mechanical and Aerospace Engineering, Korea Aerospace University)
  • Received : 2021.06.05
  • Accepted : 2021.09.21
  • Published : 2021.10.31

Abstract

In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.

본 연구에서는 압력 선회형 인젝터를 이용한 모사 젤 추진제의 분무실험을 수행하여 젤화제 첨가량에 따른 분무특성을 파악하였다. 실험을 통해 인젝터 내부의 공기층이 노즐에 국부적으로 형성되며 점차 와류실까지 확장되는 것을 확인하였으며 뉴턴 유체의 공기층 발달과정과 형상학적으로 유사한 경향성을 보였다. 분무형상은 4개의 유형으로 구분하였으며, 이를 공기층의 형성과정과 연관하여 형상학적으로 분석하였다. 분무형상을 바탕으로 일반화된 레이놀즈수, 웨버수 및 오네소지수와 같은 무차원 수에 따라 분열영역을 구분하였다. 추후 분무성능에 영향을 미치는 와류실 형상변화에 따른 공기층의 형상과 안정성, 이에 따른 분무특성에 관한 연구가 추가로 필요할 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단-미래국방혁신기술개발사업의 지원과(NRF-2020M3F6A1110342) 2020년 한국연구재단 BK21 FOUR(과제번호 : 5199990714521)의 지원을 받아 수행된 연구임

References

  1. Jeon, H.S., Liquid Atomization, 1st ed., Munundang., Seoul, Korea, pp. 347-352, 2009.
  2. Moon, S.S., Abo-Serie, E. and Bae, C.S., "Air flow and pressure inside a pressure-swirl spray and their effects on spray development," Experimental Thermal and Fluid Science, Vol. 33, No. 2, pp. 222-231, 2009. https://doi.org/10.1016/j.expthermflusci.2008.08.005
  3. Kang, Z., Wang, Z.G., Li, Q. and Cheng, P., "Review on pressure swirl injector in liquid rocket engine," Acta Astronautica, Vol. 145, pp. 174-198, 2018. https://doi.org/10.1016/j.actaastro.2017.12.038
  4. Natan, B. and Rahimi, S., "The status of gel propellants in year 2000," International journal of energetic materials and chemical propulsion, Vol. 5, No. 1-6, 2002.
  5. Yang, L.J., Fu, Q.F., Qu, Y.Y., Zhang, W., Du, M.L. and Xu, B.R., "Spray characteristics of gelled propellants in swirl injectors," Fuel, Vol. 97, pp. 253-261, 2012. https://doi.org/10.1016/j.fuel.2012.02.036
  6. Guan, H.S., Li, G.X. and Zhang, N.Y. "Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant," Acta Astronautica, Vol. 144, pp. 119-125. 2018. https://doi.org/10.1016/j.actaastro.2017.12.015
  7. Han, S.J., Koo, J.Y., and Moon, H.J., "Morphological classification of disintegration behavior of viscoelastic simulant gel propellant in coaxial streams," Journal of Visualization, Vol. 23, No. 2, pp. 287-298, 2020. https://doi.org/10.1007/s12650-019-00619-9
  8. Kim K.H., Kim S.J., Han S.J., Kim J.G. and Moon H.J., "Surface tension change of simulant gel propellant according to the metal particle addition," Journal of the korean Society of Propulsion Engineers, Vol. 21, No. 3, pp. 34-40, 2017. https://doi.org/10.6108/KSPE.2017.21.3.034
  9. Madlener, K., Frey, B. and Ciezki, H.K., "Generalized reynolds number for non-newtonian fluids," Progress in Propulsion Physics, Vol. 1, pp. 237-250,. 2009. https://doi.org/10.1051/eucass/200901237
  10. Amini, G., "Liquid flow in a simplex swirl nozzle," International Journal of Multiphase Flow, Vol. 79, pp. 225-235, 2016. https://doi.org/10.1016/j.ijmultiphaseflow.2015.09.004
  11. Thompson, J.C. and Rothstein, J.P., "The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles." Journal of non-newtonian fluid mechanics, Vol. 147 No. 1-2, pp. 11-22, 2007. https://doi.org/10.1016/j.jnnfm.2007.06.004
  12. Prakash, R.S., Gadgil, H. and Raghunandan, B.N., "Breakup processes of pressure swirl spray in gaseous cross-flow," International journal of multiphase flow, Vol. 66, pp. 79-91, 2014. https://doi.org/10.1016/j.ijmultiphaseflow.2014.07.002
  13. Saurabh, A., Deshmukh, D., Nath, S., Agarwal, D.K. and Kabiraj, L., "Impingement Atomization of Carbopol Gels." In AIAA Propulsion and Energy 2020 Forum, AIAA 2020-3973, Aug. 2020.
  14. Ohnesorge, W.V., "Formation of Drops by Nozzles and Breakup of Liquid Jets," UT Faculty/Researcher Works, 2019.