Acknowledgement
This study was funded by Aeronautics Research & Development Board (DRDO), New Delhi, India through grant file no. ARDB/01/1051907/M/I.
References
- Abdel-Hamid, O., Mohamed, A.R., Jiang, H. and Penn, G. (2012), "Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition", Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March, pp. 4277-4280. https://doi.org/10.1109/ICASSP.2012.6288864
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
- Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018), "1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data", Neurocomputing, 275, 1308-1317. https://doi.org/10.1016/j.neucom.2017.09.069
- Alampalli, S. (2000), "Effects of testing, analysis, damage, and environment on modal parameters", Mech. Syst. Signal Process., 14(1), 63-74. https://doi.org/10.1006/mssp.1999.1271
- Avci, O., Abdeljaber, O., Kiranyaz, S. and Inman, D. (2017), "Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications", Proceedings of the Society for Experimental Mechanics Series, Volume 7, pp. 49-54. https://doi.org/10.1007/978-3-319-54109-9_6
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Charleston-Villalobos, S., Gonzalez-Camarena, R., Chi-Lem, G. and Aljama-Corrales, T. (2007), "Crackle sounds analysis by empirical mode decomposition: Nonlinear and nonstationary signal analysis for distinction of crackles in lung sounds", IEEE Engineering in Medicine and Biology Magazine: The Quarterly Magazine of the Engineering in Medicine & Biology Society, 26(1), pp. 40-47. https://doi.org/10.1109/MEMB.2007.289120
- Cornwell, P., Farrar, C.R., Doebling, S.W. and Sohn, H. (1999), "Environmental variability of modal properties", Experim. Techniq., 23(6), 45-48. https://doi.org/10.1111/j.1747-1567.1999.tb01320.x
- LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W. and Jackel, L. (1989a), "Handwritten digit recognition with a back-propagation network", Adv. Neural Inform. Process. Syst., 2.
- Le Cun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson, D., Howard, R.E. and Hubbard, W. (1989b), "Handwritten digit recognition: Applications of neural network chips and automatic learning", IEEE Commun. Magazine, 27(11), 41-46. https://doi.org/10.1109/35.41400
- Datig, M. and Schlurmann, T. (2004), "Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves", Ocean Eng., 31(14-15), 1783-1834. https://doi.org/10.1016/j.oceaneng.2004.03.007
- De Oliveira, M.A., Araujo, N.V., Da Silva, R.N., Da Silva, T.I. and Epaarachchi, J. (2018), "Use of Savitzky-Golay filter for performances improvement of SHM systems based on neural networks and distributed PZT sensors", Sensors, 18(1), 152. https://doi.org/10.3390/s18010152
- dos Santos, F.L.M., Peeters, B., Lau, J., Desmet, W. and Goes, L.C.S. (2015), "The use of strain gauges in vibration-based damage detection The use of strain gauges in vibration-based damage detection", J. Physics: Conference Series, 628(1), 012119. https://doi.org/10.1088/1742-6596/628/1/012119
- Duque, A.B., Santos, L.L.J., Macedo, D. and Zanchettin, C. (2019), "Squeezed very deep convolutional neural networks for text classification", Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volume 11727, pp. 193-207. https://doi.org/10.1007/978-3-030-30487-4_16
- Flandrin, P., Rilling, G. and Goncalves, P. (2004), "Empirical mode decomposition as a filter bank", IEEE Signal Process. Lett., 11(2), 112-114. https://doi.org/10.1109/LSP.2003.821662
- Gavin, H. (2012), "Geometric stiffness effects in 2D and 3D frames", Department of Civil and Environment Engineering, Edmund T. Pratt School of Engineering, Duke University, pp. 1-14.
- Glisic, B., Chen, J. and Hubbell, D. (2011), "Streicker Bridge: a comparison between Bragg-grating longgauge strain and temperature sensors and Brillouin scattering-based distributed strain and temperature sensors", In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, Volume 7981, p. 79812C. https://doi.org/10.1117/12.881818
- Gulgec, N.S., Takac, M. and Pakzad, S.N. (2019), "Convolutional neural network approach for robust structural damage detection and localization", J. Comput. Civil Eng., 33(3), p. 04019005. https://doi.org/10.1061/(asce)cp.1943-5487.0000820
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971), pp. 903-995. https://doi.org/10.1098/rspa.1998.0193
- Ince, T., Kiranyaz, S., Eren, L., Askar, M. and Gabbouj, M. (2016), "Real-time motor fault detection by 1-D convolutional neural networks", IEEE Transact. Indust. Electron., 63(11), 7067-7075. https://doi.org/10.1109/TIE.2016.2582729
- Jin, C., Jang, S., Sun, X., Li, J. and Christenson, R. (2016), "Damage detection of a highway bridge under severe temperature changes using extended Kalman filter trained neural network", J. Civil Struct. Health Monitor., 6(3), 545-560. https://doi.org/10.1007/s13349-016-0173-8
- Khoury, G.A., Grainger, B.N. and Sullivan, J.E. (1985), "Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents", Magaz. Concrete Res., 37(132), pp. 131-144. https://doi.org/10.1680/macr.1985.37.132.131
- Kiranyaz, S., Ince, T. and Gabbouj, M. (2016), "Real-time patient-specific ECG classification by 1-D convolutional neural networks", IEEE Transact. Biomed. Eng., 63(3), 664-675. https://doi.org/10.1109/TBME.2015.2468589
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Adv. Neural Inform. Process. Syst., 25, 1097-1105.
- Kromanis, R., Kripakaran, P. and Harvey, B. (2016), "Long-term structural health monitoring of the Cleddau bridge: Evaluation of quasi-static temperature effects on bearing movements", Struct. Infrastr. Eng., 12(10), 1342-1355. https://doi.org/10.1080/15732479.2015.1117113
- Kullaa, J. (2009), "Eliminating environmental or operational influences in structural health monitoring using the missing data analysis", J. Intell. Mater. Syst. Struct., 20(11), 1381-1390. https://doi.org/10.1177/1045389X08096050
- Le Cun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W. and Jackel, L. (1989), "Handwritten digit recognition with a back-propagation network", Adv. Neural Inform. Process. Syst., 2.
- Li, H.L., Deng, X. and Dai, H. (2007), "Structural damage detection using the combination method of EMD and wavelet analysis", Mech. Syst. Signal Process., 21(1), 298-306. https://doi.org/10.1016/j.ymssp.2006.05.001
- Rabbath, C.A. and Corriveau, D. (2019), "A comparison of piecewise cubic Hermite interpolating polynomials, cubic splines and piecewise linear functions for the approximation of projectile aerodynamics", Defence Technology, 15(5), 741-757. https://doi.org/10.1016/j.dt.2019.07.016
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165
- Rezaei, D. and Taheri, F. (2011), Structural Health Monitoring, John Wiley & Sons. https://doi.org/10.1177/1475921710373298
- Sharma, S. and Sen, S. (2020), "One-dimensional convolutional neural network-based damage detection in structural joints", J. Civil Struct. Health Monitor., 10(5), 1057-1072. https://doi.org/10.1007/s13349-020-00434-z
- Sharma, S. and Sen, S. (2021a), "Bridge Damage Detection in Presence of Varying Temperature Using Two-Step Neural Network Approach", J. Bridge Eng., 26(6), 04021027. https://doi.org/10.1061/(asce)be.1943-5592.0001708
- Sharma, S. and Sen, S. (2021b), "Damage Detection in Presence of Varying Temperature Using Mode Shape and a Two-Step Neural Network", In: Recent Advances in Computational Mechanics and Simulations, pp. 285-299. https://doi.org/10.1007/978-981-15-8138-0_23
- Sharma, R., Vignolo, L., Schlotthauer, G., Colominas, M.A., Rufiner, H.L. and Prasanna, S.R.M. (2017), "Empirical mode decomposition for adaptive AM-FM analysis of speech: A review", Speech Communication, 88, 39-64. https://doi.org/10.1016/j.specom.2016.12.004
- Shulin, L., Haifeng, Z., Hui, W. and Rui, M. (2007), "Application of improved EMD algorithm for the fault diagnosis of reciprocating pump valves with spring failure", In: 2007 9th International Symposium on Signal Processing and Its Applications, pp. 1-4. https://doi.org/10.1109/ISSPA.2007.4555473
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R. and Czarnecki, J.J. (2003), "A review of structural health monitoring literature: 1996-2001", Los Alamos National Laboratory, USA, 1.
- Srinivasan, R., Rengaswamy, R. and Miller, R. (2007), "A modified empirical mode decomposition (EMD) process for oscillation characterization in control loops", Control Eng. Practice, 15(9), 1135-1148. https://doi.org/10.1016/j.conengprac.2007.01.014
- Sun, L., Shang, Z., Xia, Y., Bhowmick, S. and Nagarajaiah, S. (2020), "Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection", J. Struct. Eng., 146(5), 04020073. https://doi.org/10.1061/(asce)st.1943-541x.0002535
- Weinstein, J.C., Sanayei, M. and Brenner, B.R. (2018), "Bridge damage identification using artificial neural networks", J. Bridge Eng., 23(11), 04018084. https://doi.org/10.1061/(asce)be.1943-5592.0001302
- Xia, Q., Cheng, Y., Zhang, J. and Zhu, F. (2017), "In-service condition assessment of a long-span suspension bridge using temperature-induced strain data", J. Bridge Eng., 22(3), 04016124. https://doi.org/10.1061/(asce)be.1943-5592.0001003
- Xu, Y.L. and Chen, J. (2004), "Structural damage detection using empirical mode decomposition: experimental investigation", J. Eng. Mech., 130(11), 1279-1288. https://doi.org/10.1061/(asce)0733-9399(2004)130:11(1279)
- Xun, J. and Yan, S. (2008), "A revised Hilbert-Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure", Mech. Syst. Signal Process., 22(7), 1705-1723. https://doi.org/10.1016/j.ymssp.2008.02.008
- Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions - Part I: A linear analysis", Mech. Syst. Signal Process., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
- Yang, Y.B. and Chang, K.C. (2009), "Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique", J. Sound Vib., 322(4-5), 718-739. https://doi.org/10.1016/j.jsv.2008.11.028
- Yarnold, M.T. and Moon, F.L. (2015), "Temperature-based structural health monitoring baseline for long-span bridges", Eng. Struct., 86, 157-167. https://doi.org/10.1016/j.engstruct.2014.12.042
- Zhang, H., Qi, X., Sun, X. and Fan, S. (2008), "Application of Hilbert-Huang transform to extract arrival time of ultrasonic lamb waves", Proceedings of 2008 International Conference on Audio, Language and Image Processing, pp. 1-4.
- Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P. and Gao, R.X. (2019), "Deep learning and its applications to machine health monitoring", Mech. Syst. Signal Process., 115, 213-237. https://doi.org/10.1016/j.ymssp.2018.05.050
- Zhou, H.F., Ni, Y.Q. and Ko, J.M. (2011), "Eliminating temperature effect in vibration-based structural damage detection", 137(12), 785-796. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000273
- Zhu, Y., Ni, Y.Q., Jin, H., Inaudi, D. and Laory, I. (2019), "A temperature-driven MPCA method for structural anomaly detection", Eng. Struct., 190, 447-458. https://doi.org/10.1016/j.engstruct.2019.04.004