DOI QR코드

DOI QR Code

Optimization of MOF-801 Synthesis Using Sequential Design of Experiments

순차적 실험계획법을 이용한 MOF-801 합성공정 최적화

  • Lee, Min Hyung (Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology)
  • 이민형 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2021.09.17
  • Accepted : 2021.10.27
  • Published : 2021.12.10

Abstract

A sequential design of experiments was used to optimize MOF-801 synthesis process. For the initial screening, a general 2k factorial design was selected followed by the central composition design, one of the response surface methods. A 23 factorial design based on the molar ratio of fumaric acid, dimethylformamide (DMF), and formic acid was performed to select the more suitable response variable for the design of experimental method among the crystallinity and BET specific surface area of MOF-801. After performing 8 synthesis experiments designed by MINITAB 19 software, the characteristic analysis was performed using XRD analysis and nitrogen adsorption method. The crystallinity with R2 = 0.999 was found to be more suitable for the experimental method than that of BET specific surface area. Based on analysis of variance (ANOVA), it was confirmed that the molar ratio of fumaric acid and formic acid was a major factor in determining the crystallinity of MOF-801. Through the response optimization and contour plot of two factors, the optimal molar ratio of ZrOCl2·8H2O : fumaric acid : DMF : formic acid was 1 : 1 : 39 : 35. In order to optimize the synthesis process, the central composition design on synthesis time and temperature was performed under the identical molar ratio of precursors. The results derived through the designed 9 synthesis experiments were calculated using the quadratic model equation. Thus, the maximum crystallinity of MOF-801 predicted under the synthesis time and temperature of 7.8 h and 123 ℃, respectively.

MOF-801 합성공정의 최적화를 위해 순차적인 실험 계획법을 이용하였다. 먼저 screening을 위한 완전 2-요인 설계와 이후 반응표면 분석법 중에 하나인 중심합성 계획법을 연속적으로 사용하였다. 두 가지 반응변수인 MOF-801의 결정화도와 BET 비표면적 중에 실험계획법에 보다 적합한 변수를 선택하기 위하여 fumaric acid, dimethylformamide (DMF) 및 formic acid의 몰비를 이용한 23 요인 설계법을 수행하였다. MINITAB 19 소프트웨어에 따라 설계된 8번의 MOF-801 합성 실험을 수행한 이후 XRD 분석 및 질소흡착법을 이용하여 특성분석을 수행하였다. 두 가지 반응변수 중 결정화도의 R2이 0.999로 BET 비표면적보다 실험계획법에 보다 적합하였다. 분산 분석(ANOVA)을 통해 fumaric acid와 formic acid의 몰 비가 MOF-801의 결정화도를 결정하는 주요 인자임을 확인하였다. response optimization과 두 인자의 contour plot을 통해 최적의 몰비는 ZrOCl2·8H2O : fumaric acid : DMF : formic acid = 1 : 1: 39 : 35로 추정되었다. 이후 합성반응 공정의 최적화를 위해 도출된 전구체의 몰 비 조건에서 합성 기간과 온도에 대한 박스-벤켄설계법을 수행하였다. 설계된 9번의 합성실험을 통해 도출된 결과를 2차 모델 방정식을 이용하여 계산하였다. 이를 이용하여 MOF-801의 최대 결정화도는 합성시간 7.8 h 그리고 합성온도 123 ℃의 조건에서 얻을 수 있음을 예측하였다.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology)

References

  1. V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, Metal-organic frameworks: Structure, properties, methods of synthesis and characterization, Russ. Chem. Rev., 85, 280-307 (2016). https://doi.org/10.1070/RCR4554
  2. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe, and O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1257-1283 (2009). https://doi.org/10.1039/b817735j
  3. V. V. Butova, V. A. Polyakov, E. A. Bulanova, M. A. Soldatov, I. S. Yahia, H. Y. Zahran, A. F. Abd El-Rehim, H. Algarni, A. M. Aboraia, and A. V. Soldatov, MW synthesis of ZIF-65 with a hierarchical porous structure, Micropor. Mesopor. Mater., 293, 109685 (2020). https://doi.org/10.1016/j.micromeso.2019.109685
  4. A. L. Bugaev, A. A. Guda, K. A. Lomachenko, E. G. Kamyshova, M. A. Soldatov, G. Kaur, S. Oien-Odegaard, L. Braglia, A. Lazzarini, M. Manzoli, S. Bordiga, U. Olsbye, K. P. Lillerud, A. V. Soldatov, and C. Lamberti, Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons, Faraday Discuss., 208, 287-306 (2018). https://doi.org/10.1039/c7fd00224f
  5. S. Smolders, K. A. Lomachenko, B. Bueken, A. Struyf, A. L. Bugaev, C. Atzori, N. Stock, C. Lamberti, M. B. J. Roeffaers, and D. E. De Vos, Unravelling the redox-catalytic behavior of Ce4+ metal-organic frameworks by X-ray absorption spectroscopy, ChemPhysChem, 19, 373-378 (2018). https://doi.org/10.1002/cphc.201700967
  6. V. V. Butova, V. A. Polyakov, A. P. Budnyk, A. M. Aboraia, E. A. Bulanova, A. A. Guda, E. A. Reshetnikova, Y. S. Podkovyrina, C. Lamberti, and A. V. Soldatov, Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption, Polyhedron, 154, 457-464 (2018). https://doi.org/10.1016/j.poly.2018.08.006
  7. V. V. Butova, V. A. Polyakov, E. A. Erofeeva, I. S. Yahia, H. Y. Zahran, A. F. Abd ElRehim, A. M. Aboraia, and A. V. Soldatov, Modification of ZIF-8 with triethylamine molecules for enhanced iodine and bromine adsorption, Inorg. Chim. Acta, 509, 119678 (2020). https://doi.org/10.1016/j.ica.2020.119678
  8. H. Z. He, L. H. Du, H. L. Guo, Y. C. An, L. J. Lu, Y. L. Chen, Y. Wang, H. H. Zhong, J. Shen, J. Wu, and X. T. Shuai, Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy, Small, 16, 2001251 (2020). https://doi.org/10.1002/smll.202001251
  9. S. A. Noorian, N. Hemmatinejad, and J. A. R. Navarro, Bioactive molecule encapsulation on metal-organic framework via simple mechanochemical method for controlled topical drug delivery systems, Micropor. Mesopor. Mater., 302, 8 (2020).
  10. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, and P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals, Chem. Eur. J., 17, 6643-6651 (2011). https://doi.org/10.1002/chem.201003211
  11. Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J. R. Li, and H. C. Zhou, Zr-based metal-organic frameworks: Design, synthesis, structure, and applications, Chem. Soc. Rev., 45, 2327-2367 (2016). https://doi.org/10.1039/c5cs00837a
  12. G. Wissmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider, and P. Behrens, Modulated synthesis of Zr-fumarate MOF, Micropor. Mesopor. Mater., 152, 64-70 (2012). https://doi.org/10.1016/j.micromeso.2011.12.010
  13. G. Zahn, H. A. Schulze, J. Lippke, S. Konig, U. Sazama, M. Froba, and P. Behrens, A water-born Zr-based porous coordination polymer: Modulated synthesis of Zr-fumarate MOF, Micropor. Mesopor. Mater., 203, 186-194 (2015). https://doi.org/10.1016/j.micromeso.2014.10.034
  14. H. Furukawa, F. Gandara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, and O. M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc., 136, 4369-4381 (2014). https://doi.org/10.1021/ja500330a
  15. L. Z. Xia, and F. L. Wang, Prediction of hydrogen storage properties of Zr-based MOFs, Inorg. Chim. Acta, 444, 186-192 (2016). https://doi.org/10.1016/j.ica.2016.01.039
  16. K. S. Vetlitsyna-Novikova, V. V. Butova, I. A. Pankin, V. V. Shapovalov, and A. V. Soldatov, Zirconium-based metal-organic UiO-66, UiO-66-NDC and MOF-801 frameworks. Influence of the linker effect on the hydrogen sorption efficiency, J. Surf. Ingestig., 13, 787-792 (2019). https://doi.org/10.1134/S1027451019050173
  17. H. Furukawa, F. Gandara, Y. B. Zhang, J. C. Jiang, W. L. Queen, M. R. Hudson, and O. M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc., 136, 4369-4381 (2014). https://doi.org/10.1021/ja500330a
  18. H. Kim, H. J. Cho, S. Narayanan, S. Yang, H. Furukawa, S. Schiffres, X. S. Li, Y. B. Zhang, J. C. Jiang, O. M. Yaghi, and E. N. Wang, Characterization of adsorption enthalpy of novel water stable zeolites and metal-organic frameworks, Sci. Rep., 6, 19097 (2016). https://doi.org/10.1038/srep19097
  19. H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, and O. M. Yaghi, E. N. Wang, Water harvesting from air with metal-organic frameworks powered by natural sunlight, Science, 356, 430-432 (2017). https://doi.org/10.1126/science.aam8743
  20. H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, Adsorption-based atmospheric water harvesting device for arid climates, Nat. Commun., 9, 1191 (2018). https://doi.org/10.1038/s41467-018-03162-7
  21. J. Choi, L. C. Lin, and J. C. Grossman, Role of structural defects in the water adsorption properties of MOF-801, J. Phys. Chem. C, 122, 5545-5552 (2018). https://doi.org/10.1021/acs.jpcc.8b00014
  22. M. V. Solovyeva, L. G. Gordeeva, T. A. Krieger, and Y. I. Aristov, MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption, Energy Conv. Manag., 174, 356-363 (2018). https://doi.org/10.1016/j.enconman.2018.08.032
  23. F. Ke, C. Y. Peng, T. Zhang, M. R. Zhang, C. Y. Zhou, H. M. Cai, J. F. Zhu, and X. C. Wan, Fumarate-based metal-organic frameworks as a new platform for highly selective removal of fluoride from brick tea, Sci. Rep., 8, 939 (2018). https://doi.org/10.1038/s41598-018-19277-2
  24. X. H. Zhu, C. X. Yang, and X. P. Yan, Metal-organic framework-801 for efficient removal of fluoride from water, Micropor. Mesopor. Mater., 259, 163-170 (2018). https://doi.org/10.1016/j.micromeso.2017.10.001
  25. T. L. Tan, P. A. P. Krusnamurthy, H. Nakajima, and S. A. Rashid, Adsorptive, kinetics and regeneration studies of fluoride removal from water using zirconium-based metal organic frameworks, RSC Adv., 10, 18740-18752 (2020). https://doi.org/10.1039/d0ra01268h
  26. S. M. Prabhu, S. Kancharla, C. M. Park, and K. Sasaki, Synthesis of modulator-driven highly stable zirconium- fumarate frameworks and mechanistic investigations of their arsenite and arsenate adsorption from aqueous solutions, CrystEngComm, 21, 2320-2332 (2019). https://doi.org/10.1039/c8ce01424h
  27. J. Yoo, U. Ryu, W. Kwon, and K. M. Choi, A multi-dye containing MOF for the ratiometric detection and simultaneous removal of Cr2O72- in the presence of interfering ions, Sens. Actuator B Chem., 283, 426-433 (2019). https://doi.org/10.1016/j.snb.2018.12.031
  28. M. Q. Zheng, X. D. Zhao, K. K. Wang, Y. B. She, and Z. Q. Gao, Highly efficient removal of Cr(VI) on a stable metal-organic framework based on enhanced H-bond interaction, Ind. Eng. Chem. Res., 58, 23330-23337 (2019). https://doi.org/10.1021/acs.iecr.9b04598