DOI QR코드

DOI QR Code

Se-TiO2 지지체를 이용한 V/W/TiO2 NH3-SCR 촉매의 반응 특성 연구

The Study of Reaction Characteristics of V/W/TiO2 Catalyst Using Se-TiO2 Support On NH3-SCR Reaction

  • 이연진 (경기대학교 일반대학원 환경에너지공학과) ;
  • 원종민 (에너지기술연구원 기후변화연구본부 미세먼지연구단) ;
  • 안석현 (경기대학교 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Lee, Yeon Jin (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Won, Jong Min (Korea Institute of Energy Research (KIER) Climate Change Research Center Fine Dust Research Center) ;
  • Ahn, Suk Hyun (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 투고 : 2021.08.04
  • 심사 : 2021.09.14
  • 발행 : 2021.12.10

초록

본 연구는 질소산화물 제거를 위하여 암모니아를 환원제로 사용하는 선택적 촉매 환원법에 있어 지지체에 셀레늄을 첨가하여 300 ℃ 이하에서 V2O5/WO3/TiO2의 반응 활성을 증진시키기 위한 실험 및 반응특성 연구를 수행하였다. 졸-겔법으로 Se-TiO2 및 TiO2를 합성하였으며, 이를 지지체로 하여 V2O5/WO3/TiO2 및 V2O5/WO3/Se-TiO2 촉매를 제조하여 상용 촉매와 반응 활성을 비교하였다. 실험 결과, 졸-겔법으로 합성한 TiO2를 사용한 촉매의 탈질 효율이 상용 TiO2를 사용하여 제조한 촉매보다 낮은 결과를 보였으나 셀레늄을 첨가함에 따라 탈질 효율이 증진되었다. 따라서 BET, XRD, Raman, H2-TPR 및 FT-IR분석을 통하여 셀레늄의 첨가가 촉매의 구조에 미치는 영향을 분석하였으며 셀레늄 첨가에 의한 비표면적의 증가와 단량체 및 복합체 바나듐 종의 형성이 반응 특성에 미치는 영향을 확인하였다.

In this study, an experiment and a reaction characteristic study were conducted to enhance the reaction activity of V2O5/WO3/TiO2 at 300 ℃ or less by adding selenium to the support, in a selective catalytic reduction method using ammonia as a reducing agent to remove nitrogen oxides. Se-TiO2 and TiO2 were synthesized using the sol-gel method, and used as a support when preparing V2O5/WO3/TiO2 and V2O5/WO3/Se-TiO2 catalysts. The reaction activity of our catalyst was compared with that of a commercial catalyst. The denitration efficiency of the catalyst using TiO2 prepared by the sol-gel method was lower than that of the catalyst prepared using commercial TiO2, but was improved by the addition of selenium. Thus, the effect of selenium addition on the catalyst structure was analyzed using BET, XRD, Raman, H2-TPR, and FT-IR measurements and the effect of the increase in specific surface area by selenium addition and the formation of monomer and complex vanadium species on reaction characteristics were confirmed.

키워드

과제정보

본 연구는 한국에너지기술연구원(KIER)의 주요사업(C0-2425)을 재원으로 수행한 연구과제의 결과입니다.

참고문헌

  1. J. H. Kim, Atmospheric Acidic Deposition: State of Acid Rain in Korea and the World, Korean J. Ecology, 28(3), 169-180 (2005). https://doi.org/10.5141/JEFB.2005.28.3.169
  2. J. Zhang, X. Li, P. Chen, and B. Zhu, Research status and prospect on vanadium-based catalysts for NH3-SCR denitration, Materials, 11, 9, 1632 (2018). https://doi.org/10.3390/ma11091632
  3. Z. Qi, S. Li, and X. Guo, Development, Application and Direction of Development of Urea SCR, Int. J. Multimedia Ubiquitous Eng., 11(6), 131-142 (2016). https://doi.org/10.14257/ijmue.2016.11.6.12
  4. D. W. Kwon, K. H. Park, and S. C. Hong, The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method, Appl. Catal. A-Gen., 451, 227-235 (2013). https://doi.org/10.1016/j.apcata.2012.09.050
  5. C. A. Carrero, C. J. Keturakis, A. Orrego, R. Schomacker, and I. E. Wachs, Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor, Structural determination of supported V2O5-WO3/TiO2 catalysts by in situ Raman spectroscopy and X-ray photoelectron spectroscopy, Dalton Trans., 42, 12644-12653 (2013). https://doi.org/10.1039/c3dt50611h
  6. N. Y. Topsoe, H. Topsoe, and J. A. Dumesic, Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia: I. Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies, J. Catal., 151(1), 226-240 (1995). https://doi.org/10.1006/jcat.1995.1024
  7. L. J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E. Giamello, and F. Bregani, Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts, J. Catal., 155, 117-130 (1995). https://doi.org/10.1006/jcat.1995.1193
  8. J. M. Won, M. S. Kim, and S. C. Hong, Effect of vanadium surface density and structure in VOx/TiO2 on selective catalytic reduction by NH3, Korean J. Chem. Eng., 35, 2365-2378 (2018). https://doi.org/10.1007/s11814-018-0158-x
  9. J. Cao, W. Liu, K. K. Kang, L. Chen, X. Qiao, and X. Yao, Effects of the morphology and crystal-plane of TiO2 on NH3-SCR performance and K tolerance of V2O5-WO3/TiO2 catalyst, Appl. Catal. A-Gen., 623, 118285 (2021). https://doi.org/10.1016/j.apcata.2021.118285
  10. H. P. Ha, M. P. Reddy, P. A. Kumar, K. J. Lee, and S. H. Jung, SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures, Appl. Catal. B-Environ., 78, 301-308 (2008). https://doi.org/10.1016/j.apcatb.2007.09.012
  11. Y. Peng, C. Wang, and J. Li, Structure-activity relationship of VOx/CeO2 nanorod for NO removal with ammonia, Appl. Catal. B-Environ., 144, 538-546 (2014). https://doi.org/10.1016/j.apcatb.2013.07.059
  12. G. He, Z. Lian, Y. Yu, Y. Yang, K. Liu, X. Shi, Z. Yan, W. Shan, and H. He, Effect of treatment atmosphere on the vanadium species of V/TiO2 catalysts for the selective catalytic reduction of NOx with NH3, Catal. Sci. Technol., 10, 311-314 (2020). https://doi.org/10.1039/c9cy01888c
  13. Y. Ganjkhanlou, T. V. W. Janssens, P. N. R. Vennestrom, L. Mino, M. C. Paganini, M. Signorile, S. Bordiga, and G. Berlier, Location and activity of VOx species on TiO2 particles for NH3-SCR catalysis, Appl. Catal. B-Environ., 278(5), 119337 (2020). https://doi.org/10.1016/j.apcatb.2020.119337
  14. A. Kumar, R. K. Yadav, N. J. Park, and J. O. Baeg, Facile One-Pot Two-Step Synthesis of Novel in Situ Selenium-Doped Carbon Nitride Nanosheet Photocatalysts for Highly Enhanced Solar Fuel Production from CO2, ACS Appl. Nano Mater., 1(1), 47-54 (2018). https://doi.org/10.1021/acsanm.7b00024
  15. I. Giakoumelou, C. Fountzoula, C. Kordulis, and S. Boghosian, Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3: In situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2, J. Catal., 239, 1-12 (2006). https://doi.org/10.1016/j.jcat.2006.01.019
  16. K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, Phase Characterization of TiO2 Powder by XRD and TEM, Kasetsart J., 42(5), 357-361 (2008).
  17. S. S. R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A. DegnJensen, and R. Fehrmann, Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B-Environ., 183, 282-290 (2016). https://doi.org/10.1016/j.apcatb.2015.10.044
  18. M. V. M. Huerta, J. L. G. Fierro, and M. A. Banares, Monitoring the states of vanadium oxide during the transformation of TiO2 anatase-to-rutile under reactive environments: H2 reduction and oxidative dehydrogenation of ethane, Catal. Commun., 11(1), 15-19 (2009). https://doi.org/10.1016/j.catcom.2009.08.002
  19. I. A. Alhomoudi and G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film, Thin Solid Films, 517, 4372-4378 (2009). https://doi.org/10.1016/j.tsf.2009.02.141
  20. A. A. Gribb and J. F. Banfield, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Miner., 82, 717-728 (1997). https://doi.org/10.2138/am-1997-7-809
  21. S. C. Su and A. T. Bell, A Study of the Structure of Vanadium Oxide Dispersed on Zirconia, J. Phys. Chem. B, 102(36), 7000-7007 (1998). https://doi.org/10.1021/jp9810365
  22. M. A. Banares, M. O. G. Perez, J. L. G. Fierro, and G. G. Cortez, Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): a method for understanding the active centres of cations supported on porous materials, J. Mater. Chem., 12, 3337-3342 (2002). https://doi.org/10.1039/b204494c
  23. R. Bulanek, H. S. Yang, P. Knotek, and L. Capek, Effect of the nature and the distribution of vanadium Species on the catalytic behavior of vanadium-based silica catalysts, Stud. Surf. Sci. Catal., 174, 1295-1298 (2008). https://doi.org/10.1016/S0167-2991(08)80126-7
  24. Z. Ma, X. Wu, Y. Feng, Z. Si, D. Weng, and L. Shi, Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst, Prog. Nat. Sci., 25, 342-352 (2015). https://doi.org/10.1016/j.pnsc.2015.07.002
  25. H. Li, X. Yi, J. Miao, Y. Chen, J. Chen, and J. Wang, Improved Sulfur Resistance of Commercial V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu, Catalysts, 11(8), 906-921 (2021). https://doi.org/10.3390/catal11080906
  26. X. Liu, X. Wu, T. Xu, D. Weng, Z. si, and R. Ran, Effect of silica additive on the NH3 SCR activity and thermal stability of a V2O5/WO3 TiO2 catalyst, Chin. J. Catal., 37, 1340 (2014). https://doi.org/10.1016/S1872-2067(15)61109-3
  27. L. Casagrande, L. Litti, I. Nova, P. Forzatti, and A. Baiker, SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: reactivity and redox behavior, Appl. Catal. B-Environ., 22, 63-77 (1999). https://doi.org/10.1016/S0926-3373(99)00035-1
  28. G. Busca, L. Lietti, G. Ramis, and F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review, Appl. Catal. B-Environ., 18, 1-36 (1998). https://doi.org/10.1016/S0926-3373(98)00040-X
  29. L. Lietti, I. Nova, G. Ramis, L. Dallacqua, G. Busaca, E. Giamello, P. Forzatti, and F. Bregani, Characterization and reactivity of V2O5-MoO3/TiO2 de-NOx SCR catalysts, J. Catal., 187, 419-435 (1999). https://doi.org/10.1006/jcat.1999.2603
  30. Z. Liu, J. Han, L. Zhao, Y. W. Wu, H. X. Wang, X. Q. Pei, M. X. Xu, Q. Lu, and Y. P. Yang, Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst, Appl. Catal. A-Gen., 587, 117263 (2019). https://doi.org/10.1016/j.apcata.2019.117263
  31. H. Zhu, J. H. Kwak, C. H. F. Peden, and J. Szanyi, In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NOx over a Cu-SSZ-13 zeolite, Catal. Today, 205, 16-23 (2013). https://doi.org/10.1016/j.cattod.2012.08.043