DOI QR코드

DOI QR Code

기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성

Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination

  • 이혜련 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 이란은 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Lee, Hyeryeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lim, Chaehun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Raneun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2021.10.07
  • 심사 : 2021.11.02
  • 발행 : 2021.12.10

초록

본 연구에서는 WO3 광촉매의 활성을 증대시키기 위하여 불소 도핑을 수행하고, 메틸렌블루 염료를 이용하여 광분해 특성을 고찰하였다. 본 연구를 통해 제조된 WO3-xFx 광촉매는 WCl6 전구체로부터 WO3 광촉매를 제조하기 위한 소결과정 중에 기상 불소화 방법을 이용하여 제조하였다. 불소 도핑 후 WO3 광촉매의 밴드갭이 2.95 eV에서 2.54 eV로 감소하였고, 산소 결핍 자리 영역이 약 55% 증가하였다. 또한 제조한 광촉매의 초기 염료 분해 성능은 불소 도핑 전과 비교하였을 때 10%에서 60%로 불소 도핑 후 6배 증가하였다. 이는 불소가 도핑되어 광촉매의 밴드갭이 감소하여 적은 에너지로 촉매 활성 반응을 가능하게 하고, 또한 산소 결핍이 생성된 표면 결함이 WO3 광촉매의 가시광선 흡수영역을 증대시켜 광촉매 활성이 증가한 것으로 사료된다. 본 연구에서는 후처리 공정이 불필요한 원스텝 기상 불소화 반응을 이용하여 손쉬운 방법으로 광촉매활성이 뛰어난 불소가 도핑된 WO3-xFx 광촉매를 제조할 수 있음을 확인하였다.

In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.

키워드

과제정보

본 연구는 산업통상자원부/한국산업기술평가관리원의 핵심소재원천기술개발사업 (새집증후군 원인 가스제거용 초저가 고기능 활성탄소섬유 소재개발: 10077357)의 지원에 의하여 수행하였으며 이에 감사드립니다.

참고문헌

  1. R. Ebrahimi, A. Maleki, Y. Zandsalimi, R. Ghanbari, B. Shahmoradi, R. Rezaee, M. Safari, S. W. Joo, H. Daraei, and S. H. Puttaiah, Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution, J. Ind. Eng. Chem., 73, 297-305 (2019). https://doi.org/10.1016/j.jiec.2019.01.041
  2. C. H. Nguyen and R.-S. Juang, Efficient removal of methylene blue dye by a hybrid adsorption-photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse, J. Ind. Eng. Chem., 76, 296-309 (2019). https://doi.org/10.1016/j.jiec.2019.03.054
  3. S.-M. Yun, J. Kim, E. Jeong, J. S. Im, and Y.-S. Lee, Methylene Blue Photodegradation Properties of Anatase/brookite Hybrid TiO 2 Photocatalyst Prepared with Different Acid Catalysts, Appl. Chem. Eng., 22, 21-25 (2011).
  4. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, and M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution, J. Ind. Eng. Chem., 97, 111-128 (2021). https://doi.org/10.1016/j.jiec.2021.02.017
  5. V. T. Quyen, J. Kim, P.-M. Park, P. T. Huong, N. M. Viet, and P.Q. Thang, Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3, J. Environ. Chem. Eng., 9, 104737 (2021). https://doi.org/10.1016/j.jece.2020.104737
  6. M. Ohtaki, H. Sato, H. Fujii, and K. Eguchi, Intramolecularly selective decomposition of surfactant molecules on photocatalytic oxidative degradation over TiO2 photocatalyst, J. Mol. Catal. A: Chem., 155, 121-129 (2000). https://doi.org/10.1016/S1381-1169(99)00325-8
  7. P. P. Gonzalez-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera, C. Persson, G. A. Niklasson, and C. G. Granqvist, A. Ferreira da Silva, Optical band-gap determination of nanostructured WO3 film, Appl. Phys. Lett., 96, 061909 (2010). https://doi.org/10.1063/1.3313945
  8. K.-M. Kang, J.-H. Jeong, G.-I. Lee, J.-M. Im, H.-J. Cheon, D.-H. Kim, and Y.-C. Nah, Photocatalytic Properties of WO3 Thin Films Prepared by Electrodeposition Method, J. Korean Powder Metall. Inst., 26, 40-44 (2019). https://doi.org/10.4150/KPMI.2019.26.1.40
  9. M. M. Obeid, C. Stampfl, A. Bafekry, Z. Guan, H. Jappor, C. Nguyen, M. Naseri, D. Hoat, N. Hieu, and A. Krauklis, First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate, PCCP, 22, 15354-15364 (2020). https://doi.org/10.1039/D0CP02007A
  10. S. Mohammadi, M. Sohrabi, A. N. Golikand, and A. Fakhri, Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology, J. Photochem. Photobiol. B, 161, 217-221(2016). https://doi.org/10.1016/j.jphotobiol.2016.05.020
  11. H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh, and N. Iwamoto, Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water, J. Phys. Chem. B, 102, 10707-10711 (1998). https://doi.org/10.1021/jp982835q
  12. Y. Zheng, G. Chen, Y. Yu, Y. Zhou, and F. He, Synthesis of carbon doped WO3·0.33H2O hierarchical photocatalyst with improved photocatalytic activity, Appl. Surf. Sci., 362, 182-190 (2016). https://doi.org/10.1016/j.apsusc.2015.11.115
  13. Y. Liu, Y. Li, W. Li, S. Han, and C. Liu, Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light, Appl. Surf. Sci., 258, 5038-5045 (2012). https://doi.org/10.1016/j.apsusc.2012.01.080
  14. G. Jin and S. Liu, Preparation and photocatalytic activity of fluorine doped WO3 under UV and visible light, Dig. J. Nanomater. Biostruct., 4, 1179-1188 (2016).
  15. S. Singh, V. C. Srivastava, and S. L. Lo, Surface modification or doping of WO3 for enhancing the photocatalytic degradation of organic pollutant containing wastewaters: A review, Mater. Sci. Forum, 855, 105-126 (2016). https://doi.org/10.4028/www.scientific.net/msf.855.105
  16. M. Liao, L. Su, Y. Deng, S. Xiong, R. Tang, Z. Wu, C. Ding, L. Yang, and D. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review, J. Mater. Sci., 1-32 (2021).
  17. C. Song, C. Li, Y. Yin, J. Xiao, X. Zhang, M. Song, and W. Dong, Preparation and gas sensing properties of partially broken WO3 nanotubes, Vacuum, 114, 13-16 (2015). https://doi.org/10.1016/j.vacuum.2014.12.019
  18. S. Ge, K. W. Wong, S. K. Tam, C. H. Mak, and K. M. Ng, Facile synthesis of WO3-x nanorods with controlled dimensions and tunable near-infrared absorption, Journal of Nanoparticle Research, 20, (2018).
  19. S. S. Kalanur, Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped WO3, Catalysts, 9, 456 (2019). https://doi.org/10.3390/catal9050456
  20. T. Kim, G. Baek, S. Yang, J. Y. Yang, K. S. Yoon, S. G. Kim, J. Y. Lee, H. S. Im, and J. P. Hong, Exploring oxygen-affinitycontrolled TaN electrodes for thermally advanced TaOx bipolar resistive switching, Sci. Rep., 8, 8532 (2018). https://doi.org/10.1038/s41598-018-26997-y
  21. H. Kim, J. Kim, and S. H. Ahn, Monitoring oxygen-vacancy ratio in NiFe-based electrocatalysts during oxygen evolution reaction in alkaline electrolyte, J. Ind. Eng. Chem., 72, 273-280 (2019). https://doi.org/10.1016/j.jiec.2018.12.028
  22. K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im, and Y.-S. Lee, A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond, J. Ind. Eng. Chem., 99, 48-54 (2021). https://doi.org/10.1016/j.jiec.2021.04.002
  23. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, and Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl Mater Interfaces, 4, 4024-4030 (2012). https://doi.org/10.1021/am300835p
  24. E.M. Samsudin and S. B. Abd Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst, Appl. Surf. Sci., 391, 326-336 (2017). https://doi.org/10.1016/j.apsusc.2016.07.007
  25. Y. Kang, X. Wu, and Q. Gao, Plasmonic-Enhanced Near-Infrared Photocatalytic Activity of F-Doped (NH4)0.33WO3 Nanorods, ACS Sustain. Chem. Eng., 7, 4210-4219 (2019). https://doi.org/10.1021/acssuschemeng.8b05880
  26. X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, and J. Yang, Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO(2) Nanoparticles, Materials (Basel), 10, 1398 (2017). https://doi.org/10.3390/ma10121398
  27. D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, and N. Ohashi, Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies, Chem. Phys. Lett., 401, 579-584 (2005). https://doi.org/10.1016/j.cplett.2004.11.126
  28. J. C. Gonzalez-Torres, E. Poulain, V. Dominguez-Soria, R. GarciaCruz, and O. Olvera-Neria, C-, N-, S-, and F-Doped Anatase TiO2 (101) with Oxygen Vacancies: Photocatalysts Active in the Visible Region, Int. J. Photoenergy, 2018, 1-12 (2018).
  29. L. Gan, L. Xu, S. Shang, X. Zhou, and L. Meng, Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism, Ceram. Int., 42, 15235-15241 (2016). https://doi.org/10.1016/j.ceramint.2016.06.160
  30. A. W. Sleight, Tungsten and molybdenum oxyfluorides of the type MO3-xFx, Inorg. Chem., 8, 1764-1767 (1969). https://doi.org/10.1021/ic50078a041
  31. M. A. Lange, Y. Krysiak, J. Hartmann, G. Dewald, G. Cerretti, M. N. Tahir, M. Panthofer, B. Barton, T. Reich, and W. G. Zeier, Solid State Fluorination on the Minute Scale: Synthesis of WO3-xFx with Photocatalytic Activity, Adv. Func. Mater., 30, 1909051 (2020). https://doi.org/10.1002/adfm.201909051
  32. B.-G. Park and K.-H. Chung, Visible Light Photocatalytic Properties of Bismuth Ferrite Prepared By Sol-Gel Method, Korean Chem. Eng. Res., 58, 486-492 (2020).
  33. B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, Structural study of a new hexagonal form of tungsten trioxide, J. Solid State Chem., 29, 429-434 (1979). https://doi.org/10.1016/0022-4596(79)90199-3
  34. W. Li, T. Wang, D. Huang, C. Zheng, Y. Lai, X. Xiao, S. Cai, and W. Chen, Hexagonal WO3·0.33 H2O Hierarchical Microstructure with Efficient Photocatalytic Degradation Activity, Catalysts, 11, 496 (2021). https://doi.org/10.3390/catal11040496
  35. J. Zhang, D. Fu, S. Wang, R. Hao, and Y. Xie, Photocatalytic removal of chromium (VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility, mechanism and kinetics, J. Ind. Eng. Chem., 80, 23-32 (2019). https://doi.org/10.1016/j.jiec.2019.07.027