DOI QR코드

DOI QR Code

A Study on Toluene Oxidation Reaction Characteristics of Ni-Based Catalyst in Induction Heating System

유도가열 시스템을 이용한 Ni계 촉매의 톨루엔 산화 반응 특성 연구

  • Lee, Ye Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Chul (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성철 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2021.09.29
  • Accepted : 2021.10.22
  • Published : 2021.12.10

Abstract

Research on induction heating catalyst system was conducted to solve problems of the existing catalyst system for removing volatile organic compounds. In the present study, three types of Ni-based commercial catalysts were employed, and induction heating reaction characteristics including the catalyst volume, composition, heat treatment atmosphere, and position in the coil were investigated. The composition and volume of the catalyst affected the exothermic and toluene oxidation performance in the induction heating system. In particular, the Fe-added catalyst showed high exothermic performance compared to that of other catalysts consisting of more than 99% Ni, but had low toluene oxidation performance. In addition, the heat treatment in an air atmosphere of the Ni-based catalyst drastically reduced the performance. In the induction heating system, the optimal condition for the catalyst was to be located in the center of the coil. The catalyst showed similar activities among seven repeated experiments under the optimal condition derived from this work.

휘발성유기화합물을 제거하기 위한 기존 촉매 시스템의 문제를 해결하고자 유도가열 촉매 시스템에 대한 연구를 수행하였다. 본 연구에서는 3종류의 Ni계 상용촉매를 적용하였으며, 촉매 부피, 조성, 열처리 분위기, 코일 내 위치를 포함한 유도가열 반응 특성을 조사하였다. 촉매의 조성 및 부피는 유도가열 시스템에 의한 발열 및 톨루엔 산화 성능에 영향을 미쳤다. 특히 철이 첨가된 촉매는 99% 이상의 Ni로 구성된 촉매에 비해 높은 발열을 나타내었으나 낮은 톨루엔 산화 성능을 나타내었다. 또한 Ni계 촉매의 열처리에 있어 공기 분위기는 촉매의 성능을 급격히 저하시킨다. 유도가열 시스템에서 촉매는 코일 내 중심에 위치하는 것이 최적 조건으로 나타났다. 연구를 통해 도출한 최적의 조건에서 촉매를 7회 반복 실험하였으며, 유사한 성능을 확인하였다.

Keywords

Acknowledgement

본 연구는 경기녹색환경지원센터(2021년도 연구개발사업)의 연구비 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, and Z. Hao, Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources, Chem. Rev., 119, 4471-4568 (2019). https://doi.org/10.1021/acs.chemrev.8b00408
  2. S. Ojala, S. Pitkaaho, T. Laitinen, N. N. Koivikko, R. Brahmi, J. Gaalova, L. Matejova, A. Kucherov, S. Paivarinta, C. Hirschmann, T. Nevanpera, M. Riihimaki, M. Pirila and R. L. Keiski, Catalysis in VOC Abatement, Top. Catal., 54, 1224-1256 (2011). https://doi.org/10.1007/s11244-011-9747-1
  3. M. Amann and M. Lutz, The revision of the air quality legislation in the European Union related to ground-level ozone, J. Hazard. Mater., 78, 41-62 (2000). https://doi.org/10.1016/S0304-3894(00)00216-8
  4. R.-J. Huang, Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, and F. Canonaco, High secondary aerosol contribution to particulate pollution during haze events in china., Nature, 514, 218-222 (2014). https://doi.org/10.1038/nature13774
  5. Y. Kim, D. Y. Kim, M. Jung, M. I. Kim and Y. Lee, The Preparation of TiO2 Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs, Appl. Chem. Eng., 24, 314-319 (2013).
  6. A. S. K. Warahena and Y. K. Chuah, Energy Recovery Efficiency and Cost Analysis of VOC Thermal Oxidation Pollution Control Technology, Environ. Sci. Technol., 43, 6101-6105 (2009). https://doi.org/10.1021/es900626e
  7. F. Heymes, P. M. Demoustier, F. Charbit, J. L. Fanlo, and P. Moulin, A new efficient absorption liquid to treat exhaust air loaded with toluene, Chem. Eng. J., 115, 225-231 (2006). https://doi.org/10.1016/j.cej.2005.10.011
  8. F. Heymes, P. M. Demoustier, F. Charbit, J. L. Fanlo, and P. Moulin, Treatment of gas containing hydrophobic VOCs by a hybrid absorption-pervaporation process: The case of toluene, Chem. Eng. Sci., 62, 2576-2589 (2007). https://doi.org/10.1016/j.ces.2007.02.001
  9. S. W. Kang, B. H. Min, and S. S. Suh, A study on cleaning process for benzene recovery in activated carbon bed, J. Korean Oil Chem. Soc., 19, 108-116 (2002).
  10. K. Zhou, W. Ma, Z. Zeng, X. Ma, X. Xu, Y. Guo, H. Li and L. Li, Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites, Chem. Eng. J., 372, 1122-1133 (2019). https://doi.org/10.1016/j.cej.2019.04.218
  11. Y. Jang, S. M. Lee, H. Yang and S. S. Kim, A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities, Appl. Chem. Eng., 30, 633-638 (2019). https://doi.org/10.14478/ACE.2019.1064
  12. T. P. Kumar, M. Rahul, and B. Chandrajit, Biofiltration of volatile organic compounds (VOCs) - An overview, Res. J. Chem. Sci., 1, 83-92 (2011).
  13. H. Wang, W. Yang, P. Tian, J. Zhou, R. Tang, and S. Wu, A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature, Appl. Catal. A, 529, 60-67 (2017). https://doi.org/10.1016/j.apcata.2016.10.016
  14. M. S. Kamal, S. A. Razzak and M. M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ., 140, 117-134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
  15. P. M. Mortensen, J. S. Engbaek, S. B. Vendelbo, M. F. Hansen and M. Ostberg, Direct Hysteresis Heating of Catalytically Active Ni-Co Nanoparticles as Steam Reforming Catalyst, Ind. Eng. Chem. Res., 56, 14006-14013 (2017). https://doi.org/10.1021/acs.iecr.7b02331
  16. L. Lu, S. Zhang, J. Xu, H. He and X. Zhao, Numerical study of titanium melting by high frequency inductive heating, Int. J. Heat Mass Transfer, 108, 2021-2028 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.062
  17. F. Varsano, M. Bellusci, A. L. Barbera, M. Petrecca, M. Albino and C. Sangregorio, Dry reforming of methane powered by magnetic induction, Int. J. Hydrog. Energy, 44, 21037-21044 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.055
  18. A. Bordet, L. Lacroix, P. Fazzini, J. Carrey, K. Soulantica and B. Chaudret, Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power, Angew. Chem. Int. Ed., 55, 15894-15898 (2016). https://doi.org/10.1002/anie.201609477
  19. Y. Xie, Y. Guo, Y. Guo, L. Wang, W. Zhan, Y. Wang, X. Gong and Guanzhong Lu, A highly effective Ni-modified MnOx catalyst for total oxidation of propane: the promotional role of nickel oxide, RSC Adv., 6, 50228-50237 (2016). https://doi.org/10.1039/C6RA09039G
  20. B. Solsona, T. Garcia, E. Aylon, A. M. Dejoz, I. Vazquez, S. Agouram, T. E. Davies and S. H. Taylor, Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion, Chem. Eng. J., 175, 271-278 (2011). https://doi.org/10.1016/j.cej.2011.09.104
  21. S. Bhanuchandar, G. Vinothkumar, P. Arunkumar, M. Sribalaji, A. K. Keshri and K. S. Babu, Controlled growth of Ni/NiO composite nanoparticles and its influenceon exchange anisotropy and spin glass features, J. Alloys Compd., 780, 256-265 (2019). https://doi.org/10.1016/j.jallcom.2018.11.330