Acknowledgement
본 연구는 경기녹색환경지원센터(2021년도 연구개발사업)의 연구비 지원에 의해 수행되었으며 이에 감사드립니다.
References
- C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, and Z. Hao, Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources, Chem. Rev., 119, 4471-4568 (2019). https://doi.org/10.1021/acs.chemrev.8b00408
- S. Ojala, S. Pitkaaho, T. Laitinen, N. N. Koivikko, R. Brahmi, J. Gaalova, L. Matejova, A. Kucherov, S. Paivarinta, C. Hirschmann, T. Nevanpera, M. Riihimaki, M. Pirila and R. L. Keiski, Catalysis in VOC Abatement, Top. Catal., 54, 1224-1256 (2011). https://doi.org/10.1007/s11244-011-9747-1
- M. Amann and M. Lutz, The revision of the air quality legislation in the European Union related to ground-level ozone, J. Hazard. Mater., 78, 41-62 (2000). https://doi.org/10.1016/S0304-3894(00)00216-8
- R.-J. Huang, Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, and F. Canonaco, High secondary aerosol contribution to particulate pollution during haze events in china., Nature, 514, 218-222 (2014). https://doi.org/10.1038/nature13774
- Y. Kim, D. Y. Kim, M. Jung, M. I. Kim and Y. Lee, The Preparation of TiO2 Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs, Appl. Chem. Eng., 24, 314-319 (2013).
- A. S. K. Warahena and Y. K. Chuah, Energy Recovery Efficiency and Cost Analysis of VOC Thermal Oxidation Pollution Control Technology, Environ. Sci. Technol., 43, 6101-6105 (2009). https://doi.org/10.1021/es900626e
- F. Heymes, P. M. Demoustier, F. Charbit, J. L. Fanlo, and P. Moulin, A new efficient absorption liquid to treat exhaust air loaded with toluene, Chem. Eng. J., 115, 225-231 (2006). https://doi.org/10.1016/j.cej.2005.10.011
- F. Heymes, P. M. Demoustier, F. Charbit, J. L. Fanlo, and P. Moulin, Treatment of gas containing hydrophobic VOCs by a hybrid absorption-pervaporation process: The case of toluene, Chem. Eng. Sci., 62, 2576-2589 (2007). https://doi.org/10.1016/j.ces.2007.02.001
- S. W. Kang, B. H. Min, and S. S. Suh, A study on cleaning process for benzene recovery in activated carbon bed, J. Korean Oil Chem. Soc., 19, 108-116 (2002).
- K. Zhou, W. Ma, Z. Zeng, X. Ma, X. Xu, Y. Guo, H. Li and L. Li, Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites, Chem. Eng. J., 372, 1122-1133 (2019). https://doi.org/10.1016/j.cej.2019.04.218
- Y. Jang, S. M. Lee, H. Yang and S. S. Kim, A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities, Appl. Chem. Eng., 30, 633-638 (2019). https://doi.org/10.14478/ACE.2019.1064
- T. P. Kumar, M. Rahul, and B. Chandrajit, Biofiltration of volatile organic compounds (VOCs) - An overview, Res. J. Chem. Sci., 1, 83-92 (2011).
- H. Wang, W. Yang, P. Tian, J. Zhou, R. Tang, and S. Wu, A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature, Appl. Catal. A, 529, 60-67 (2017). https://doi.org/10.1016/j.apcata.2016.10.016
- M. S. Kamal, S. A. Razzak and M. M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ., 140, 117-134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
- P. M. Mortensen, J. S. Engbaek, S. B. Vendelbo, M. F. Hansen and M. Ostberg, Direct Hysteresis Heating of Catalytically Active Ni-Co Nanoparticles as Steam Reforming Catalyst, Ind. Eng. Chem. Res., 56, 14006-14013 (2017). https://doi.org/10.1021/acs.iecr.7b02331
- L. Lu, S. Zhang, J. Xu, H. He and X. Zhao, Numerical study of titanium melting by high frequency inductive heating, Int. J. Heat Mass Transfer, 108, 2021-2028 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.062
- F. Varsano, M. Bellusci, A. L. Barbera, M. Petrecca, M. Albino and C. Sangregorio, Dry reforming of methane powered by magnetic induction, Int. J. Hydrog. Energy, 44, 21037-21044 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.055
- A. Bordet, L. Lacroix, P. Fazzini, J. Carrey, K. Soulantica and B. Chaudret, Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power, Angew. Chem. Int. Ed., 55, 15894-15898 (2016). https://doi.org/10.1002/anie.201609477
- Y. Xie, Y. Guo, Y. Guo, L. Wang, W. Zhan, Y. Wang, X. Gong and Guanzhong Lu, A highly effective Ni-modified MnOx catalyst for total oxidation of propane: the promotional role of nickel oxide, RSC Adv., 6, 50228-50237 (2016). https://doi.org/10.1039/C6RA09039G
- B. Solsona, T. Garcia, E. Aylon, A. M. Dejoz, I. Vazquez, S. Agouram, T. E. Davies and S. H. Taylor, Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion, Chem. Eng. J., 175, 271-278 (2011). https://doi.org/10.1016/j.cej.2011.09.104
- S. Bhanuchandar, G. Vinothkumar, P. Arunkumar, M. Sribalaji, A. K. Keshri and K. S. Babu, Controlled growth of Ni/NiO composite nanoparticles and its influenceon exchange anisotropy and spin glass features, J. Alloys Compd., 780, 256-265 (2019). https://doi.org/10.1016/j.jallcom.2018.11.330