DOI QR코드

DOI QR Code

Characteristics of butyric acid bacterium, Clostridium butyricum DIMO 52, isolated from feces of Korean breastfeeding infants

국내 모유수유 유아의 분변에서 분리한 낙산균 Clostridium butyricum DIMO 52의 특징

  • Mo, SangJoon (Medical Laser Research Center, Dankook University)
  • 모상준 (단국대학교 의학레이저연구센터)
  • Received : 2021.09.23
  • Accepted : 2021.11.10
  • Published : 2021.12.31

Abstract

After isolating the DIMO 52 strain with a large inhibition zone diameter for Clostridium perfringens and maximum butyric acid production from the fecal sample of a breastfeeding infant, it was identified as Clostidium butyricum. The maximum growth of the DIMO 52 strain was reached 24 h after inoculation, and the maximum butyric acid concentration was approximately 34.73±4.27 mM. The DIMO 52 strain survived approximately 67.5% of the initial inoculum at pH 2.0, and approximately 64.9% survived in RCM broth supplemented with 0.3% (w/v) oxgall. In addition, DIMO 52 showed antibacterial activity against Escherichia coli KCTC 2441 and Salmonella Typhimurium KCTC 1925. In LPS-stimulated RAW264.7 cells, 1×103 CFU/mL viable cells of the DIMO 52 strain also exhibited significant NO (nitric oxide) production inhibitory activity (33%, p<0.01). This result suggests that C. butyricum DIMO 52 has anti-inflammatory activity related to NO radical-scavenging activity. In conclusion, C. butyricum DIMO 52 isolated in this study has the potential to be used as a probiotic.

Clostidium butyricum을 분리하기 위하여 국내 모유수유 신생아 분변으로부터 혐기성 균주를 선별하였고 버블을 생성하는 100개의 균을 확보하였다. 이중 Clostridium perfringens에 대한 항균력과 butyric acid의 생산이 가장 우수한 DIMO 52 균주를 선발하였고, 형태학적 특성, 생리 생화적 특성 및 16S rRNA 유전자 분석을 통하여 C. butyricum으로 동정되어 C. butyricum DIMO 52로 명명하였다. 성장률, butyric acid 생산 및 pH 변화를 배양 36시간 동안 모니터링하였다. 배양 24시간 후 DIMO 52 균주의 최대 성장에 도달하였고, butyric acid 최대 농도는 대략 34.73±4.27 mM이었으며, pH는 7.2에서 2.5로 변경되었다. DIMO 52 균주는 낮은 pH와 oxgall에 높은 저항성이 있다. pH 2에서 2시간 동안 접종의 약 67.5%의 유의성 있는 생존율을 보였다(p<0.05). 그리고, 0.3% oxgall이 함유된 RCM 액체배지에서 24시간 동안 접종의 약 64.9%의 유의성 있는 생존율을 보였다(p<0.05). 또한, DIMO 52은 Escherichia coli KCTC 2441와 Salmonella Typhimurium KCTC 1925에 대해 억제효과를 나타냈다. 두 균주에 대한 항균효과는 아마도 butyric acid에 의한 낮은 pH 때문인 것으로 보였다. 5×103 CFU/mL 생균수 까지는 RAW264.7 세포에 세포독성이 없는 것으로 관찰되었고, NO 생성을 억제할 수 있는 최저 균수를 확인한 결과 약 1×103 CFU/mL 생균수에서 LPS만 처리한 군 대비 약 33%의 NO 생성을 억제하는 것으로 분석되었다(p<0.01). 이 결과는 C. butyricum DIMO 52이 NO radical 소거 및 항염증 활성을 가지고 있음을 시사한다. 결론적으로, 본 연구에서 분리된 C. butyricum DIMO 52의 프로바이오틱스 특성을 확인하였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구 사업임(NRF-2020R1A6A1A03043283). 또한 한국기초과학원 국가연구시설장비진흥센터의 지원을 받아 수행된 연구임(과제관리번호: 2019R1A6C1010033).

References

  1. Cappuccino JG, Sherman N. Differential staining for visualization of bacterial cell structure. pp. 81-84. In: Microbiology, A Laboratory Manual, 9th ed. The Benjamin/Cummings Publishing Co., San Francisco, CA, USA (2011)
  2. Choi HJ, Shin MS, Lee SM, and Lee WK. Immunomodulatory properties of Enterococcus faecium JWS 833 isolated from duck intestinal tract and suppression of Listeria monocytogenes infection. Microbiol Immunol. 56: 613-620 (2012) https://doi.org/10.1111/j.1348-0421.2012.00486.x
  3. Choi WS, Kwon HS, No RH, Choi GP, Lee HY. Enhancement of anti-inflammatory activities of fermented Scutellaria baicalensis extracts using Lactobacillus rhamnosus. J. Soc. Cosmet. Sci. Korean 39: 303-311 (2013)
  4. Erkkila S, Petaja E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 297-300 (2000) https://doi.org/10.1016/S0309-1740(99)00156-4
  5. Farzanfar A. The use of probiotics in shrimp aquaculture. FEMS Immunol. Med. Microbiol. 48: 149-158 (2006) https://doi.org/10.1111/j.1574-695X.2006.00116.x
  6. Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378 (1989) https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  7. Gao Q, Qi L, Wu T, Wang J. An important role of interleukin-10 in counteracting excessive immune response in HT-29 cells exposed to Clostridium butyricum. BMC Microbiol. 12: 100 (2012) https://doi.org/10.1186/1471-2180-12-100
  8. Gilliland SE, Speck ML. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33: 15-18 (1977) https://doi.org/10.1128/aem.33.1.15-18.1977
  9. Goldenberg JZ, Lytvyn L, Steurich J, Parkin P, Mahant S, Johnston BC. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane DB. Syst. Rev. 22: CD004827 (2015)
  10. Hirayama K, Rafter J. The role of probiotic bacteria in cancer prevention. Microbes. Infect. 2: 681-686 (2000) https://doi.org/10.1016/S1286-4579(00)00357-9
  11. Kaneko N, Nakayama T, Ichikawa N. Susceptibility of spore-forming butyric acid bacteria to antimicrobial agents. Yakugaku Zasshi 132: 849-853 (2012) https://doi.org/10.1248/yakushi.132.849
  12. Kaur IP, Chopra K, Saini A. Probiotics: potential pharmaceutical applications. Eur. J. Pharm. Sci. 15: 1-9 (2002) https://doi.org/10.1016/S0928-0987(01)00209-3
  13. Kim YJ, Son DY. Inflammatory mediator regulation of the Zizyphus jujube leaf fractions in the LPS-stimulated Raw264.7 mouse macrophage. Korean J. Food Preserv. 21: 114-120 (2014) https://doi.org/10.11002/KJFP.2014.21.1.114
  14. Kishore G, Karthik A, Gopal SV, Kumar AR, Bhat M, Udupa N. Development of RP-HPLC method for simultaneous estimation of lactic acid and glycolic acid. Der. Pharma. Chemica. 5: 335-340 (2013)
  15. Kwang JH, Lee JC, Kim TH, Chung PK, Lee KK. Isolation and characterization of a butyric acid bacterium from infant feces. Korean J. Microbiol. Biotechnol. 17: 56-62 (1989)
  16. Park HE, Lee WK. Immunomodulatory effects of mixed Weissella cibaria JW15 with water extract of black soybean and burdock on Listeria monocytogenes infection in mice. J. Biomed. Transl. Res. 18: 1-6 (2017) https://doi.org/10.12729/jbtr.2017.18.1.001
  17. Pennacchia C, Ercolini D, Blaiotta G, Pepe O, Mauriello G, Villani F. Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Sci. 67: 309-317 (2004) https://doi.org/10.1016/j.meatsci.2003.11.003
  18. Pool-Zobel BL, Neudecker C, Domizlaff I, Ji S, Schillinge, U, Rumney C, Moretti M, Vilarini I, Scassellati-Sforzolini R, Rowland I. Lactobacillus- and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer 26: 365-380 (1996) https://doi.org/10.1080/01635589609514492
  19. Roy D. Media for the isolation and enumeration of bifidobacteria in dairy products. Int. J. Food Microbiol. 69: 167-182 (2001) https://doi.org/10.1016/S0168-1605(01)00496-2
  20. Saavedra JM. Clinical applications of probiotic agents. Am. J. Clin. Nutr. 73: 1147-1151 (2001) https://doi.org/10.1093/ajcn/73.6.1147S
  21. Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek 70: 347-358 (1996) https://doi.org/10.1007/BF00395941
  22. Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, Kurata S. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr. Int. 45: 86-90 (2003) https://doi.org/10.1046/j.1442-200X.2003.01671.x
  23. Shinnoh M, Horinaka M, Yasuda T, Yoshikawa S, Morita M, Yamada T, Miki T, Sakai T. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. Int. J. Oncol. 42: 903-911 (2013) https://doi.org/10.3892/ijo.2013.1790
  24. Smibert RM, Krieg NR. Phenotypic characterization. pp. 611-654. In: Methods for General and Molecular Bacteriology. Gerhardt P, Murray RG, Wood WA, Krieg NR (eds). American Society for Microbiology, Washington DC, USA (1994)
  25. Szymanowska-Powalowska D, Orczyk D, Leja K. Biotechnological potential of Clostridium butyricum bacteria. Braz. J. Microbiol. 45: 892-901 (2014) https://doi.org/10.1590/S1517-83822014000300019
  26. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64: 655-671 (2000) https://doi.org/10.1128/MMBR.64.4.655-671.2000
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703 (1991) https://doi.org/10.1128/jb.173.2.697-703.1991