DOI QR코드

DOI QR Code

Effects of Temperature on the Development and Reproduction of Four Species of Aphids (Hemiptera: Aphididae) Damaging Cereal Crops

식량작물에 피해를 주는 진딧물 4종의 발육과 번식에 미치는 온도의 영향

  • Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Choi, Kyung San (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA) ;
  • Seo, Bo Yoon (Crop Protection Division, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Jung, Jin Kyo (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
  • 안정준 (농촌진흥청 국립원예특작과학원) ;
  • 최경산 (농촌진흥청 국립원예특작과학원) ;
  • 서보윤 (농촌진흥청 국립농업과학원) ;
  • 정진교 (농촌진흥청 국립식량과학원)
  • Received : 2021.07.05
  • Accepted : 2021.09.30
  • Published : 2021.12.01

Abstract

Aphids can damage plants directly by absorbing their phloem sap and indirectly by transferring plant viruses and causing sooty mold. We compared the thermal effect on the development, survivorship, and reproduction of four cereal crop-damaging aphid species, Rhopalosiphum padi, Aulacorthum solani, Aphis craccivora, and Acyrthosiphon pisum using a life table analysis method. We investigated the stage-specific development period, survivorship, adult longevity, and fecundity of the above mentioned four aphids at 10, 15, 20, 25, and 30℃, respectively, and analyzed their life table parameters using the age-stage, two-sex life table analysis. A. solani nymphs could not complete their development to adulthood at 30℃. The intrinsic increase rate of R. padi was the highest at all tested temperatures except for that at 15℃ (0.12, 0.34, 0.47, and 0.32 at 10, 20, 25, and 30℃, respectively), and that of A. pisum displayed negative values at 30℃ (-0.04). It is speculated that R. padi would be a dominant species under high temperature conditions and A. solani is a highly adaptive species at low temperatures through the comparative analysis of the life table parameters of four aphid species damaging to cereal crops.

진딧물은 직접적으로 식물의 체관부를 흡즙함으로써 식물 피해를 줄 뿐 아니라 식물 바이러스를 매개하고 그을음병을 유발시켜 식물에 이차적인 피해를 준다. 식량작물에 영향을 주는 기장테두리진딧물(Rhopalosiphum padi), 싸리수염진딧물(Aulacorthum solani), 아카시아진딧물(Aphis craccivora), 완두수염진딧물(Acyrthosiphon pisum)의 발육, 생존, 번식에 미치는 온도의 영향을 생명표분석을 통하여 비교하였다. 10, 15, 20, 25, 30℃에서 얻은 발육단계별 발육기간, 생존율, 성충수명, 성충산자 자료를 암수이용생명표분석(age-stage, two-sex life table analysis) 방법을 이용하여 생명표매개변수를 추정하였다. 싸리수염진딧물은 30도에서 성충으로 발육하지 못하였다. 15℃를 제외한 모든 온도에서 기장 테두리진딧물의 내적자연증가율이 가장 높았으며 (10, 20, 25, 30℃에서 0.12, 0.34, 0.47, 0.32) 30도에서 완두수염진딧물의 내적자연증가율은 음의 값 (-0.04)이었다. 식량작물을 가해하는 진딧물 4종의 생명표 매개변수 비교분석을 통해 저온 적응성이 높은 종은 싸리수염진딧물이었고 고온 환경에서는 기장테두리진딧물이 우점할 것으로 추정되었다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 시험연구사업(PJ01527801)을 수행하는 과정에서 얻은 결과를 바탕으로 작성되었다.

References

  1. Agunbiade, T.A., Sun, W., Coates, B.S., Djouaka, R., Tamo, M., Ba, M.N., Binso-Dabire, C., Baoua, I., Olds, B.P., Pittendrigh, B.R., 2013. Development of reference transcriptomes for the major field insect pests of cowpea: A toolbox for insect pest management approaches in West Africa. PLos ONE 8, e79929. https://doi.org/10.1371/journal.pone.0079929
  2. Ahn, J.J., Cho, J.R., Kim, J-H., Seo, B.Y., 2020. Thermal effects on the population parameters and growth of Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Insects 11, 481. https://doi.org/10.3390/insects11080481
  3. Ahn, J.J., Choi, K.S., Koh, S., 2019. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74. https://doi.org/10.1007/s13355-018-0593-5
  4. Ahn, J.J., Choi, K.S., Koh, S., 2021. Population parameters and growth of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) under elevated CO2 concentrations. Entomol. Res. 51, 12-23. https://doi.org/10.1111/1748-5967.12479
  5. Akca, I., Ayvaz, T., Yazici, E., Smith, C.L., Chi, H., 2015. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): with additional comments on life table research criteria. J. Econ. Entomol. 108, 1466-1478. https://doi.org/10.1093/jee/tov187
  6. Andrewartha, G.G., Birch, L.C., 1954. The Distribution and Abundance of Animals. University of Chicago Press, Chicago, USA.
  7. Asin, L., Pons, X., 2001. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their populations dynamics on the northeastern Iberian peninsula. Environ. Entomol. 30, 1127-1134. https://doi.org/10.1603/0046-225X-30.6.1127
  8. Auad, A.M., Alves, S.O., Carvalho, C.A., Silva, D.M., Resende, T.T., Verissimo, B.A., 2009. The impact of temperature on biological aspects and life table of Rhopalosiphum padi L. (Homoptera: Aphididae) fed with signal grass. Fla. Entomol. 92, 569-577. https://doi.org/10.1653/024.092.0406
  9. Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, Buse, A., Coulson, J.C., Farrar, J., Good, J.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  10. Berberet, R.C., Giles, K.L., Zarrabi, A.A., Payton, M.E., 2009. Development, reproduction and within-plant infestation patterns of Aphis craccivora (Homoptera: Aphididae) on Alfalfa. Environ. Entomol. 38, 1765-1771. https://doi.org/10.1603/022.038.0630
  11. Birch, L.C., 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 17, 15-26. https://doi.org/10.2307/1605
  12. Blackman, R.I., Eastop, V.F., 2000. Aphids on the World's Crops: An Identification and information Guide. John Wiley. New York, NY, USA.
  13. Borer, E.T., Adams, V.T., Engler, G.A., Adams, A.L., Schumann, C.B., Seabloom, E.W., 2009. Aphid fecundity and grassland invasion: invader life history is the key. Ecol. Appl. 19, 1187-1196. https://doi.org/10.1890/08-1205.1
  14. Borowiak-Sobkowiak, B., Durak, R., Wikaniec, B., 2017. Morphology, biology and behavioral aspects of Aphis craccivora (Hemiptera: Aphididae) on Robinia pseudoacacia. Acta Sci. Pol. Hortorum Cultus. 16, 39-49. https://doi.org/10.24326/asphc.2017.5.5
  15. Brault, V., Tanguy, S., Reinbold, C., Le Trionnaire, G., Arneodo, J., Jaubert-Possamai, S., Guernec, G., Tagu, D., 2009. Transcriptomic analysis of intestinal genes following acquisition of pea enation mosaic virus by the pea aphid Acyrthosiphon pisum. J. Gen. Virol. 91, 802-808. https://doi.org/10.1099/vir.0.012856-0
  16. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438. https://doi.org/10.2307/2402197
  17. Carry, J.R., 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press, Inc., New York, NY, USA.
  18. Chang, Y-D., Youn, Y-N., 1983. A study on the biology of primary parasites of the cow-pea aphid, Aphis craccivora Koch (Aphididae, Homo.) and its hyperparasites. Korean J. Plant Prot. 22, 237-243.
  19. Chen, G.M., Chi, H., Wang, R.C., Wang, Y.P., Xu, Y.Y., Li, X.D., Yin, P., Zheng, F-Q., 2018. Demography and uncertainty of population growth of Conogethes punctiferalis (Lepidoptera: Crambidae) reared on five host plants with discussion on some life history statistics. J. Econ. Entomol., 111, 2143-2152. https://doi.org/10.1093/jee/toy202
  20. Chi, H. 2020b. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. http://140.120.197.173/Ecology/Download/Timing-MSChart.rar.
  21. Chi, H., 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26-34. https://doi.org/10.1093/ee/17.1.26
  22. Chi, H., 2020a. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/Twosex-MSChart.exe-B100000.rar.
  23. Chi, H., Liu, H., 1985. Two new methods for the study of insect population ecology. B. I. Zool. Acad. Sinica. 24, 225-240.
  24. Chi, H., Su, H.Y., 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35, 10-21. https://doi.org/10.1603/0046-225X-35.1.10
  25. Chi, H., You, M., Atlihan, R., Smith, C.L., Kavousi, A., Ozgokce, M.S., Guncan, A., Tuan, S-J., Fu, J-W., Xu, Y-Y., Zheng, F-Q., Ye, B-H., Chu, D., Yu, Y., Gharekhani, G., Saska, P., Gotoh, T., Schneider, M.I., Bussaman, P., Gokce, A., Liu T-X., 2020. Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Gen. 40, 103-124. https://doi.org/10.1127/entomologia/2020/0936
  26. Clarke, R.G., Bath, J.E., 1973. Transmission of Pea Enation Mosaic Virus by the Pea Aphid, Acyrthosiphon pisum, following Virus Acquisition by Injection1, 2. Ann. Entomol. Soc. Am. 66, 603-607. https://doi.org/10.1093/aesa/66.3.603
  27. Cuperus, G., Radcliffe, E., Barnes, D., Marten, G., 1982. Economic injury levels and economic thresholds for pea aphid, Acyrthosiphon pisum (Harris), on alfalfa. Crop Prot. 1, 453-463. https://doi.org/10.1016/0261-2194(82)90026-6
  28. Descamps, L.R., Chopa, C.S., 2011. Population growth of Rhopalosiphum padi L. (Homoptera: Aphididae) on different cereal crops from the semiarid pampas of Argentina under laboratory conditions. Chilean JAR 71, 390-394.
  29. Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B., Naylor, R.L., 2018. Increase in crop losses to insect pests in a warming climate. Science 361, 916-919. https://doi.org/10.1126/science.aat3466
  30. Dixon, A.F.G., Honek, A., Keil, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
  31. Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. Chapman & Hall, New York, NY, USA.
  32. Favert C., 2021. Aphid species file. Version 5.0/5.0.. http://Aphid.Speicesfile.org.
  33. Garcia-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J., 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS 113, 680-685. https://doi.org/10.1073/pnas.1507681113
  34. Govindan, B.N., Hutchinson, W.D., 2020. Influence of temperature on age-stage, two-sex life tables for a Minnesota-acclimated population of the brown marmorated stink bug (Halyomorpha halys). Insects 11, 108. https://doi.org/10.3390/insects11020108
  35. Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P., Forister, M.L., 2021. Insects and recent climate change. PNAS 118, e2002543117. https://doi.org/10.1073/pnas.2002543117
  36. Harris, R.M.B., Beaumont, L.J., Vance, T.R., Tozer, C.R., Remenyi, T., Perkins-Kirkpatrick, S.E., Mitchell, P.J., Nicotra, A.B., Mc-Gregor, S., Andrew, N.R., Letnic, M., Kearney, M.R., Wernberg, T., Hutley, L.B., Chambers, L.E., Fletcher, M-S., Keatley, M.R., Woodward, C.A., Williamson, G., Duke, N.C., Bowman, D.M.J.S., 2018. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Chang. 8, 579-587. https://doi.org/10.1038/s41558-018-0187-9
  37. Henderson, P.A., Southwood, T.R.E., 2016. Ecological Methods. West Susseex, John Wiley & Sons, UK.
  38. Hodge, S., Powell, G., 2010. Conditional Facilitation of an Aphid Vector, Acyrthosiphon pisum, by the Plant Pathogen, Pea Enation Mosaic Virus. J. Insect Sci. 10, 1-14. https://doi.org/10.1673/031.010.14115
  39. Honek, A., 1999. Constraints on thermal requirements for insect development. Entomol. Sci. 2, 615-621.
  40. Huang, K.Y.B., Atlihan, R., Gokce, A., Huang, J.Y.B., Chi, H., 2016. Demographic analysis of sex ratio on population growth of Bactrocera dorsalis (Diptera: Tephritidae) with discussion of control efficacy using male annihilation. J. Econ. Entomol. 109, 2249-2258. https://doi.org/10.1093/jee/tow212
  41. Huang, Y.B., Chi, H., 2012. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). J. Agri. Fore. 61, 37-45.
  42. Huey, R.B., Kingsolver, J.G., 1989. Evolution of thermal sensitivity of ectotherm performance. TREE 4, 131-135.
  43. Hwang, C.Y., Uhm, K.B., Choi, K.M., 1981. Seasonal occurrence of aphids (Aulacorthum solani K., Aphis glycines M.) and effects of some insecticides on aphids with infurrow treatment in soybean. Korean J. Plant Prot. 20, 112-116.
  44. Jactel, H., Koricheva, J., Castagneyrol, B., 2019. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103-108. https://doi.org/10.1016/j.cois.2019.07.010
  45. Jandricic, S.E., Wraight, S.P., Bennett, K.C., Sanderson, J.P., 2010. Developmental times and life table statistics of Aulacorthum solani (Hemiptera: aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ. Entomol. 39, 1631-1642. https://doi.org/10.1603/EN09351
  46. Johansson, F., Orizaola, G., Nilsson-Ortman, V., 2020. Temperature insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Scientific Reports 10, 8822. https://doi.org/10.1038/s41598-020-65608-7
  47. Kim, D-H., Lee, G-H., Park, J-W., Hwang, C-Y., 1991. Occurrence aspects and ecological characteristics of foxglove aphid, Aulacorthum solani, Kaltenbach (Homoptera: Aphididae) in soybean. Res. Rept. RDA. 33, 28-32.
  48. Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
  49. Kuo, M-H., Chen, C-Y., 2004. Development and population parameters of the cowpea aphid, Aphid craccivora Koch (Hemoptera: Aphididae), at various constant temperatures. Formosan Entomol. 24, 305-315.
  50. Laamari, M., Khelfa, L., Coeur d'Acier, A., 2008. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. Afr. J. Biotechnol. 7, 2486-2490.
  51. Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75. https://doi.org/10.1093/ee/24.1.68
  52. Lee, J.S., Yoo, M., Jung, J.K., Bilyeu, K.D., Lee, J-D., 2015. Detection of novel QTLs for foxglove aphid resistance in soybean. Theor. Appl. Genet. 128, 1481-1488. https://doi.org/10.1007/s00122-015-2519-8
  53. Lehmann, P., Ammunet, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G., Neuvonen, S., Niemela, P., Terblanche, J.S., Okland, B., Bjorkman, C., 2020. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141-150. https://doi.org/10.1002/fee.2160
  54. Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  55. Moran, N.A., 1992. The evolution of aphid life cycles. Annu. Rev. Entomol. 37, 321-348. https://doi.org/10.1146/annurev.en.37.010192.001541
  56. Morgan, D., 2000. Population dynamics of the bird cherry-oat aphid, Rhopalosiphum padi (L.), during the autumn and winter: a modelling approach. Agr. Forest Entomol. 2, 297-304. https://doi.org/10.1046/j.1461-9563.2000.00079.x
  57. Park, C-G., Choi, B-R., Cho, J.R., Kim, J-H., Ahn, J.J., 2017. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley. J. Asia-Pacific Entomol. 20, 767-775. https://doi.org/10.1016/j.aspen.2017.05.004
  58. Park, J.J., Kwon, S.H., Kim, T.O., Oh, S.O., Kim, D.-S., 2016. Temperature-dependent development and fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on corns. Korean J. Appl. Entomol. 55, 149-160. https://doi.org/10.5656/KSAE.2016.05.0.015
  59. Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L., Kaplan, I., 2011. Insect Ecology: Behavior, Populations, and Communities. Cambridge University Press, Cambridge, UK.
  60. Sainsbury, F., Canizares, M.C., Lomonossoff, G.P., 2010. Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu. Rev. Phytopathol. 48, 437-455. https://doi.org/10.1146/annurev-phyto-073009-114242
  61. Samayoa, A.C., Choi, K.S., Wang, Y.-S., Hwang, S.-Y., Huang, Y.-B., Ahn, J.J., 2018. Thermal effects on the development of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and model validation in Taiwan. Phytoparasitica 46, 365-376. https://doi.org/10.1007/s12600-018-0674-6
  62. Schoolfield, R., Sharpe, P., Magnuson, C., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
  63. Schwinghamer, M.W., Nicholas, A.H., Schilg, M.A., 2009. Three aphid vectors of faba bean (Vicia faba) viruses in northern New SouthWales and occurrence of Acyrthosiphon pisum-transmitted isolates of Soybean dwarf virus. Australas. Plant Pathol. 38, 262-269. https://doi.org/10.1071/AP09001
  64. Seo, B.Y., Kim, E.Y., Ahn, J.J., Kim, Y., Kang, S., Jung, J.K., 2020. Development, reproduction and life table parameters of the foxglove aphid, Aulacorthum solani Kaltenback (Hemiptera: Aphididae), on soybean at constant temperatures. Insects 11, 296. https://doi.org/10.3390/insects11050296
  65. Sharpe, P.J., DeMichele, D.W., 1977. Reaction kinetics of poikilo therm development. J. Theor. Biol. 64, 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  66. Shi, M.Z., Li, J.Y., Ding, B., Fu, J.W., Zheng, L.Z., Chi, H., 2019. Indirect effect of elevated CO2 on population parameters and growth of Agasicles hygrophila (Coleoptera: Chrysomelidae), a biocontrol agent of Alligatorweed (Amaranthaceae). J. Econ. Entomol, 112, 1120-1129. https://doi.org/10.1093/jee/toz015
  67. Skendzic, S., Zovko, M., Zivkovic, I.P., Lesic, V., Lemic, D., 2021. The impact of climate change on agricultural insect pests. Insects 12, 440 https://doi.org/10.3390/insects12050440
  68. Southwood, T.R.E., 1978. Ecological Methods: With Particular Reference to the Study of Insect Populations (2nd ed.). Chapman and Hall, London, UK.
  69. Taheri, S., Razmjou, J., Rastegari, N., 2010. Fecundity and development rate of the bird cherry-oat aphid, Rhopalosiphum padi (L) (Hom.: Aphididae) on six wheat cultivars. Plant Prot. Sci. 46, 72-78. https://doi.org/10.17221/10/2009-pps
  70. Takada, H., Ono, T., Torikura, H., Enokiya, T., 2006. Geographic variation in esterase allozymes of Aulacorthum solani (Homoptera: Aphididae) in Japan, in relation to its outbreaks on soybean. Appl. Entomol. Zool. 41, 595-605. https://doi.org/10.1303/aez.2006.595
  71. Takemoto, H., Uefune, M., Ozawa, R., Arimura, G-I., Takabayashi, J., 2013. Previous infestation of pea aphids Acyrthosiphon pisumon broad bean plants resulted in the increased performance of conspecific nymphs on the plants. J. Plant Interact. 8, 370-374. https://doi.org/10.1080/17429145.2013.786792
  72. Tang, Q.L., Ma, K.S., Chi, H., Hou, Y. M., Gao, X.W., 2019. Transgenerational hormetic effects of sublethal dose of flupyradifurone on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). PLoS One, 14, e0208058. https://doi.org/10.1371/journal.pone.0208058
  73. Tuan, S.J., Lee, C.C., Chi, H. 2014b. Erratum: population and damage rojection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two- sex life table. Pest Manag. Sci. 70, 1936. https://doi.org/10.1002/ps.3920
  74. Tuan, S.J., Lee, C.C., Chi, H., 2014a. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805-813. https://doi.org/10.1002/ps.3618
  75. Wagner, D.L., 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457-480. https://doi.org/10.1146/annurev-ento-011019-025151
  76. Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., Stopak, D., 2021. Insect decline in the Anthropocene: death by a thousand cuts. PNAS 118, e2023989118. https://doi.org/10.1073/pnas.2023989118