DOI QR코드

DOI QR Code

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin (School of Civil and Resource Engineering, University of Science and Technology Beijing) ;
  • Sun, J.B. (School of Design and the Built Environment, Curtin University) ;
  • Heidarzadeh, Milad (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Jam, M.M. Nemati (Department of Civil Engineering, K.N. Toosi University of Technology) ;
  • Benjeddou, O. (Prince Sattam bin Abdulaziz University, College of Engineering, Department of Civil Engineering)
  • 투고 : 2020.01.20
  • 심사 : 2021.08.20
  • 발행 : 2021.12.10

초록

This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

키워드

과제정보

This paper is supported by the National Key Research and Development Program of China (No. 2018YFC0604604, 2018YCF1900603).

참고문헌

  1. Asadolahi, S.M. and Fanaie, N. (2020), "Performance of self-centering steel moment frame considering stress relaxation in prestressed cables", Adv. Struct. Eng., 1369433219900940. https://doi.org/10.1177%2F1369433219900940. https://doi.org/10.1177%2F1369433219900940
  2. Brinkgreve, R., Swolfs, W., Engin, E., Waterman, D., Chesaru, A., Bonnier, P. and Galavi, V. (2011), "PLAXIS 2D Reference manual", Delft University of Technology and PLAXIS bv The Netherlands.
  3. Chen, Q.S., Sun, S.Y., Liu, Y.K., Qi, C.C., Zhou, H.B. and Zhang, Q.L. (2021a), "Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill", Int. J. Miner. Metallurgy Mater., 28(9), 1440-1452. https://doi.org/10.1007/s12613-021-2274-6.
  4. Chen, Q., Tao, Y., Zhang, Q. and Qi, C.C. (2022), "The rheological, mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide", Chemosphere, 286, 131630. https://doi.org/10.1016/j.chemosphere.2021.131630.
  5. Chen, S., Zhang, J., Meng, F. and Wang, D. (2021b)., "A markov chain position prediction model based on multidimensional correction", Complexity, 2021. https://doi.org/10.1155/2021/6677132.
  6. Dravinski, M. (1982), "Scattering of SH waves by subsurface topography", J. Eng. Mech. Division, 108(1), 1-17. https://doi.org/10.1061/JMCEA3.0002788.
  7. Ebrahimi, F. and Hosseini, S.H.S. (2021), "Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of double-walled nanobeams: an analytical study", Eng. with Comput., 37(2), 1219-1230. https://doi.org/10.1007/s00366-019-00879-x.
  8. Elham, K. and Hesam, K. (2016), "Investigating the relationship between soil properties and infestation population of causal agent of soybean charcoal rot (Macrophomina phaseolina)", Academia J. Agricultural Res., 4(6), 363-373.
  9. Fanaie, N., Kazerani, S. and Soroushnia, S. (2017a), "Numerical study of slotted web drilled flange moment frame connection", Int. J. Numer. Method. Civil Eng., 1(3), 16-23. http://dx.doi.org/10.29252/nmce.1.3.16
  10. Fanaie, N. and Tahriri, M. (2017b), "Stability and stiffness analysis of a steel frame with an oblique beam using method of least work", J. Constr. Steel Res., 137, 342-357. https://doi.org/10.1016/j.jcsr.2017.06.032.
  11. Feng, P., Chang, H., Liu, X., Ye, S., Shu, X. and Ran, Q. (2020), "The significance of dispersion of nano-SiO2 on early age hydration of cement pastes", Mater. Design, 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320.
  12. Feng, S., Zuo, C., Zhang, L., Yin, W. and Chen, Q. (2021), "Generalized framework for non-sinusoidal fringe analysis using deep learning", Photonics Res., 9(6), 1084-1098. https://doi.org/10.1364/PRJ.420944.
  13. Ghanbari-Ghazijahani, T., Nabati, A., Azandariani, M.G. and Fanaie, N. (2020), "Crushing of steel tubes with different infills under partial axial loading", Thin-Wall. Struct., 149, 106614. https://doi.org/10.1016/j.tws.2020.106614.
  14. Goudarzi, A., Ghassemieh, M., Fanaie, N., Laefer, D.F. and Baei, M. (2016), "Axial load effects on flush end-plate moment connections", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 170(3), 199-210. https://doi.org/10.1680/jstbu.15.00042.
  15. Hu, B., Wu, Y., Wang, H., Tang, Y. and Wang, C. (2021), "Risk mitigation for rockfall hazards in steeply dipping coal seam: a case study in Xinjiang, northwestern China", Geomatics, Nat. Hazard. Risk, 12(1), 988-1014. https://doi.org/10.1080/19475705.2021.1909147.
  16. Jahanbakhti, E., Fanaie, N. and Rezaeian, A. (2017), "Experimental investigation of panel zone in rigid beam to box column connection", J. Constr. Steel Res., 137, 180-191. https://doi.org/10.1016/j.jcsr.2017.06.025.
  17. Jahannoosh, M., Nowdeh, S.A., Naderipour, A., Kamyab, H., Davoudkhani, I.F. and Klemes, J.J. (2021), "New hybrid metaheuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability", J. Cleaner Production, 278, 123406. https://doi.org/10.1016/j.jclepro.2020.123406.
  18. Jena, S.K., Sahu, J., Padhy, G., Mohanty, S. and Dash, A. (2020), "Chlorination roasting-coupled water leaching process for potash recovery from waste mica scrap using dry marble sludge powder and sodium chloride", Int. J. Miner. Metallurgy Mater., 27(9), 1203-1215. https://doi.org/10.1007/s12613-020-1994-3.
  19. Karimi, H., Rahmani, R., Othman, M.F., Zohoori, B., Mahrami, M., Kamyab, H. and Hosseini, S.E. (2016), "An analytical approach to calculate the charge density of biofunctionalized graphene layer enhanced by artificial neural networks", Plasmonics, 11(1), 95-102. https://doi.org/10.1007/s11468-015-9998-y.
  20. Kasperkiewicz, J., Racz, J. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9(4), 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279).
  21. Kazerani, S., Fanaie, N. and Soroushnia, S. (2017), "Seismic behavior of drilled beam section in moment connections", Int. J. Numer. Method. Civil Eng., 1(4), 1-6. http://dx.doi.org/10.29252/nmce.1.4.1.
  22. Khudhair, A.B., Hadibarata, T., Yusoff, A.R.M., Teh, Z.C., Adnan, L.A. and Kamyab, H. (2015), "Pyrene metabolism by new species isolated from soil Rhizoctonia zeae SOL3", Water, Air, & Soil Pollution, 226(6), 1-9. https://doi.org/10.1007/s11270-015-2432-4.
  23. Kobayashi, S. (1983), "Some problems of the boundary integral equation method in elastodynamics", Bound. Elem., 775-784.
  24. Kordestani, H., Zhang, C., Masri, S.F. and Shadabfar, M. (2021), "An empirical time-domain trend line-based bridge signal decomposing algorithm using Savitzky-Golay filter", Struct. Control Health Monit., 28(7), e2750. https://doi.org/10.1002/stc.2750.
  25. Kumar, A., Sharma, T., Mulla, S.I., Kamyab, H., Pant, D. and Sharma, S. (2019), "Let's protect our earth: Environmental challenges and implications", Microbes and Enzymes in Soil Health and Bioremediation, 1-10. https://doi.org/10.1007/978-981-13-9117-0_1
  26. Li, G., Sun, Y. and Qi, C. (2021), "Machine learning-based constitutive models for cement-grouted coal specimens under shearing", Int. J. Min. Sci. Technol., https://doi.org/10.1016/j.ijmst.2021.08.005.
  27. Liu, D., Lian, M.J., Lu, C.W. and Zhang, W. (2020), "Effect of the lenticles on moisture migration in capillary zone of tailings dam", Int. J. Miner. Metallurgy Mater., 27(8), 1036-1045. https://doi.org/10.1007/s12613-020-1963-x.
  28. Luo, J., Li, M., Liu, X., Tian, W., Zhong, S. and Shi, K. (2020), "Stabilization analysis for fuzzy systems with a switched sampled-data control", J. Franklin Inst., 357(1), 39-58. https://doi.org/10.1016/j.jfranklin.2019.09.029
  29. Maslahati Roudi, A., Chelliapan, S., Wan Mohtar, W.H.M. and Kamyab, H. (2018), "Prediction and optimization of the fenton process for the treatment of landfill leachate using an artificial neural network", Water, 10(5), 595. https://doi.org/10.3390/w10050595.
  30. Mathur, R.P. (1989), A new hybrid method for three-dimensional dynamic soil-structure interaction, The University of Arizona.
  31. Meng, F., Wang, D., Yang, P. and Xie, G. (2019), "Application of sum of squares method in nonlinear H∞ control for satellite attitude maneuvers", Complexity, 2019. https://doi.org/10.1155/2019/5124108.
  32. Mishra, A.R., Mardani, A., Rani, P., Kamyab, H. and Alrasheedi, M. (2021). "A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector", Energy, 237, 121500. https://doi.org/10.1016/j.energy.2021.121500.
  33. Moghadam, H., Fanaei, N. and Motazedian, D. (2010), "Estimation of stress drop for some large shallow earthquakes using stochastic point source and finite fault modeling".
  34. Moghaddam, H., Fanaie, N. and Hamzehloo, H. (2009), "Uniform hazard response spectra and ground motions for Tabriz", Scientia Iranica, 16(3).
  35. Mossessian, T. and Dravinski, M. (1987), "Application of a hybrid method for scattering of P, SV, and Rayleigh waves by near-surface irregularities", Bull. Seismol. Soc. Am., 77(5), 1784-1803. https://doi.org/10.1785/BSSA0770051784.
  36. Naderipour, A., Abdul-Malek, Z., Davoodkhani, I.F., Kamyab, H. and Ali, R.R. (2021), "Load-frequency control in an islanded microgrid PV/WT/FC/ESS using an optimal self-tuning fractional-order fuzzy controller", Environ. Sci. Pollut. Res., 1-12. https://doi.org/10.1007/s11356-021-14799-1.
  37. Najarkolaie, K.F., Mohammadi, M. and Fanaie, N. (2017), "Realistic behavior of infilled steel frames in seismic events: experimental and analytical study", Bull. Earthq. Eng., 15(12), 5365-5392. https://doi.org/10.1007/s10518-017-0173-z.
  38. Nguyen, H.T. and Kim, S.E. (2009), "Finite element modeling of push-out tests for large stud shear connectors", J. Constr. Steel Res., 65(10-11), 1909-1920. https://doi.org/10.1016/j.jcsr.2009.06.010.
  39. Nilashi, M., Rupani, P.F., Rupani, M.M., Kamyab, H., Shao, W., Ahmadi, H., Rashid, T.A. and Aljojo, N. (2019), "Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach", J. Cleaner Production, 240, 118162. https://doi.org/10.1016/j.jclepro.2019.118162.
  40. Oreta, A.W. and Kawashima, K. (2003), "Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng., 129(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(554).
  41. Ouchi, M., Nakamura, S., Osterberg, T., Hallberg, S. and Lwin, M. (2003), "Applications of self-compacting concrete in Japan, Europe and the United States", Kochi University of Technology, Kochi, Japan.
  42. Paronesso, A. and Wolf, J.P. (1995), "Global lumped-parameter model with physical representation for unbounded medium", Earthq. Eng. Struct. Dynam., 24(5), 637-654. https://doi.org/10.1002/eqe.4290240503.
  43. Qi, C. and Fourie, A. (2019), "Cemented paste backfill for mineral tailings management: Review and future perspectives", Miner. Eng., 144, 106025. https://doi.org/10.1016/j.mineng.2019.106025.
  44. Rouhanifar, S., Afrazi, M., Fakhimi, A. and Yazdani, M. (2020), "Strength and deformation behaviour of sand-rubber mixture", Int. J. Geotech. Eng., 1-15. https://doi.org/10.1080/19386362.2020.1812193.
  45. Sarkar, J. and Das, D. (2019), "Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks", Int. J. Miner. Metallurgy Mater., 26(10), 1322-1328. https://doi.org/10.1007/s12613-019-1835-4.
  46. Shah, A., Wong, K. and Datta, S. (1982), "Diffraction of plane SH waves in a half-space", Earthq. Eng. Struct. D., 10(4), 519-528. https://doi.org/10.1002/eqe.4290100402.
  47. Sun, Y., Li, G., Basarir, H., Karrech, A. and Azadi, M.R. (2019a), "Laboratory evaluation of shear strength properties for cement-based grouted coal mass", Arabian J. Geosci., 12(22), 1-11. https://doi.org/10.1007/s12517-019-4908-9.
  48. Sun, Y., Li, G. and Zhang, J. (2020a), "Developing hybrid machine learning models for estimating the unconfined compressive strength of jet grouting composite: a comparative study", Appl. Sci., 10(5), 1612. https://doi.org/10.3390/app10051612.
  49. Sun, Y., Li, G. and Zhang, J. (2020b), "Investigation on jet grouting support strategy for controlling time-dependent deformation in the roadway", Energy Sci. Eng., 8(6), 2151-2158. https://doi.org/10.1002/ese3.654.
  50. Sun, Y., Li, G., Zhang, J. and Qian, D. (2019b), "Stability control for the rheological roadway by a novel high-efficiency jet grouting technique in deep underground coal mines", Sustainability, 11(22), 6494. https://doi.org/10.3390/su11226494.
  51. Sun, Y., Li, G.,Zhang, J. and Xu, J. (2020c), "Failure mechanisms of rheological coal roadway", Sustainability, 12(7), 2885. https://doi.org/10.3390/su12072885.
  52. Sun, Y., Li, G., Zhang, N., Chang, Q., Xu, J. and Zhang, J. (2021), "Development of ensemble learning models to evaluate the strength of coal-grout materials", Int. J. Mining Sci. Technol., 31(2), 153-162. https://doi.org/10.1016/j.ijmst.2020.09.002.
  53. Sun, Y., Zhang, J., Li, G., Ma, G., Huang, Y., Sun, J., Wang, Y. and Nener, B. (2019c), "Determination of Young's modulus of jet grouted coalcretes using an intelligent model", Eng. Geology, 252, 43-53, https://doi.org/10.1016/j.enggeo.2019.02.021.
  54. Tam, C., Tong, T.K. and Tse, S.L. (2002), "Artificial neural networks model for predicting excavator productivity", Eng. Constr. Architect. Manage., https://doi.org/10.1108/eb021238.
  55. Touhei, T. and Ohmachi, T. (1993), "A FE-BE method for dynamic analysis of dam-foundation-reservoir systems in the time domain", Earthq. Eng. Struct. D., 22(3), 195-209. https://doi.org/10.1002/eqe.4290220303.
  56. Veletsos, A.S. and Meek, J.W. (1974), "Dynamic behaviour of building-foundation systems", Earthq. Eng. Struct. D., 3(2), 121-138. https://doi.org/10.1002/eqe.4290030203.
  57. von Estorff, O. and Kausel, E. (1989), "Coupling of boundary and finite elements for soil-structure interaction problems", Earthq. Eng. Struct. D., 18(7), 1065-1075. https://doi.org/10.1002/eqe.4290180711.
  58. Wang, L., Wu, C., Tang, L., Zhang, W., Lacasse, S., Liu, H. and Gao, L. (2020), "Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method", Acta Geotechnica, 15(11), 3135-3150. https://doi.org/10.1007/s11440-020-00962-4.
  59. Wang, L., Wu, C., Gu, X., Liu, H., Mei, G. and Zhang, W. (2020), "Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines", Bull. Eng. Geology Environ., 79, 2763-2775. https://doi.org/10.1007/s10064-020-01730-0.
  60. Wolf, J.P. (1987), Soil-structure-interaction analysis in time domain. Structural mechanics in reactor technology.
  61. Wolf, J.P. and Song, C. (1996), Finite-element modelling of unbounded media, Wiley Chichester.
  62. Wong, H. (1982), "Effect of surface topography on the diffraction of P, SV, and Rayleigh waves", Bull. Seismol. Soc. Am., 72(4), 1167-1183. https://doi.org/10.1785/BSSA0720041167.
  63. Xie, W., Zhang, R., Zeng, D., Shi, K. and Zhong, S. (2020), "Strictly dissipative stabilization of multiple-memory Markov jump systems with general transition rates: A novel event-triggered control strategy", Int. J. Robust Nonlinear Control, 30(5), 1956-1978. https://doi.org/10.1002/rnc.4856.
  64. Xu, J., Wu, Z., Chen, H., Shao,L., Zhou, X. and Wang, S. (2021), "Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology", KSCE J. Civil Eng., https://doi.org/10.1007/s12205-021-2034-1.
  65. Yang, Y., Hou, C., Lang, Y., Sakamoto, T., He, Y. and Xiang, W. (2019), "Omnidirectional motion classification with monostatic radar system using micro-Doppler signatures", IEEE T. Geosci. Remote Sens., 58(5), 3574-3587. https://doi.org/10.1109/TGRS.2019.2958178.
  66. Yavari, S., Asadpour, R., Kamyab, H., Yavari, S., Kutty, S.R.M., Baloo, L., Abd Manan, T.S.B., Chelliapan, S. and Sidik, A.B.C. (2021a), "Efficiency of carbon sorbents in mitigating polar herbicides leaching from tropical soil", Clean Technol. Environ. Policy, 1-10. https://doi.org/10.1007/s10098-021-02113-z.
  67. Yavari, S., Kamyab, H., Asadpour, R., Yavari, S., Sapari, N.B., Baloo, L., Abd Manan, T.S.B., Ashokkumar, V. and Chelliapan, S. (2021b), "The fate of imazapyr herbicide in the soil amended with carbon sorbents", Biomass Conversion and Biorefinery, 1-9. https://doi.org/10.1007/s13399-021-01587-7.
  68. Yousefi, A.M., Hosseini, M. and Fanaie, N. (2014), "Vulnerability assessment of progressive collapse of steel moment resistant frames", Trends in Appl. Sci. Res., 9(8), 450. https://doi.org/10.3923/tasr.2014.450.460
  69. Yue, C.S., Peng, B., Tian, W., Lu, G.H., Qiu, G.B. and Zhang, M. (2019), "Complete stabilization of severely As-contaminated soil by a simple H2O2 pre-oxidation method combined with non-toxic TMT-15 and FeCl3.6H2O", Int. J. Minerals, Metallurgy Mater., 26(9), 1105-1112. https://doi.org/10.1007/s12613-019-1819-4.
  70. Zhang, K., Jia, C., Song, Y., Jiang, S., Jiang, Z., Wen, M., Huang, Y., Liu, X., Jiang, T. and Peng, J. (2020), "Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: A case study of Weiyuan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region", Fuel, 263, 115978. https://doi.org/10.1016/j.fuel.2019.115978.
  71. Zhang, R., Wu, C., Goh, A.T.C., Bohlke, T. and Zhang, W. (2021), "Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning", Geosci. Frontiers, 12(1), 365-373. https://doi.org/10.1016/j.gsf.2020.03.003.
  72. Zhang, W., Zhang, R., Wang, W., Zhang, F. and Chee Goh, A.T. (2019), "A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays", Tunn. Undergr. Sp. Tech., 84, 461-471. https://doi.org/10.1016/j.tust.2018.11.046.
  73. Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Frontiers, 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.
  74. Zhang, X., Wegner, J. and Haddow, J. (1999), "Three-dimensional dynamic soil-structure interaction analysis in the time domain", Earthq. Eng. Struct. D., 28(12), 1501-1524. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12%3C1501::AID-EQE878%3E3.0.CO;2-8.
  75. Zhao, C., Liu, X., Zhong, S., Shi, K., Liao, D. and Zhong, Q. (2021), "Secure consensus of multi-agent systems with redundant signal and communication interference via distributed dynamic event-triggered control", ISA Transactions, 112, 89-98. https://doi.org/10.1016/j.isatra.2020.11.030.
  76. Zhao, C., Zhong, S., Zhang, X., Zhong, Q. and Shi, K. (2020a), "Novel results on nonfragile sampled-data exponential synchronization for delayed complex dynamical networks", Int. J. Robust Nonlinear Control, 30(10), 4022-4042. https://doi.org/10.1002/rnc.4975.
  77. Zhao, C., Zhong, S., Zhong, Q. and Shi, K. (2020b). "Synchronization of Markovian complex networks with input mode delay and Markovian directed communication via distributed dynamic event-triggered control", Nonlinear Anal. Hybrid Syst., 36, 100883. https://doi.org/10.1016/j.nahs.2020.100883.
  78. Zhou, W., Lv, Y., Lei, J. and Yu, L. (2019), "Global and local-contrast guides content-aware fusion for RGB-D saliency prediction", IEEE T. Syst. Man Cy. Syst., https://doi.org/10.1109/TSMC.2019.2957386.
  79. Zhao, Y., Yan, Q., Yang, Z., Yu, X. and Jia, B. (2020), "A novel artificial bee colony algorithm for structural damage detection", Adv. Civil Eng., 2020, 1-21. https://doi.org/10.1155/2020/3743089.
  80. Zienkiewicz, O., Kelly, D. and Bettess, P. (1977), "The coupling of the finite element method and boundary solution procedures", Int. J. Numer. Method. Eng., 11(2), 355-375. https://doi.org/10.1002/nme.1620110210