Acknowledgement
This work was supported by the National Natural Science Foundation of China [grant numbers 51678476, 51608433, 51908449], scientific research plan projects of Shaanxi Education Department [grant number 20JY033, 20JK0713], and the Key Research and Development Project of Shaanxi Province [grant number 2018ZDXM-SF-097]. All opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.
References
- Alireza, K. and Hossein, O. (2018), "Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse" Steel Compos. Struct., 26(5),549-556. https://doi.org/10.12989/scs.2018.26.5.549.
- Baghi, H., Oliveira, A., Valenca, J., Cavaco, E., Neves, L. and Julio, E. (2018), "Behavior of reinforced concrete frame with masonry infill wall subjected to vertical load", Eng. Struct., 171, 476-487. https://doi.org/10.1016/j.engstruct.2018.06.001.
- Demonceau, J.F. and Jaspart, J.P. (2010), "Experimental test simulating a column loss in a composite frame", Adv. Steel. Constr., 6(3), 891-913. https://doi.org/10.1142/S0578563410002166.
- Dinu, F., Marginean, I. and Dubina, D. (2017), "Experimental testing and numerical modelling of steel moment-frame connections under column loss", Eng. Struct., 151, 861-878. https://doi.org/10.1016/j.engstruct.2017.08.068.
- DoD (Department of Defense) (2013), Design of buildings to resist progressive collapse. Unified facilities criteria (UFC) 4-023-03. Washington DC: DoD.
- Fu, Q.N., Tan, K.H., Zhou, X.H. and Yang, B. (2017), "Load-resisting mechanisms of 3D composite floor systems under internal column-removal scenario", Eng. Struct., 148, 357-372. https://doi.org/10.1016/j.engstruct.2017.06.070.
- Fu, Q.N., Yang, B., Hu, Y., Xiong, G., Nie, S.D., Zhang, W.F. and Dai, G.X. (2016), "Dynamic analyses of bolted-angle steel joints against progressive collapse based on component-based model", J. Constr. Steel Res., 117, 161-174. https://doi.org/10.1016/j.jcsr.2015.10.010.
- Gao, S. (2014), "Progressive collapse behavior of planar steel frame with composite beam", Ph.D. Dissertation, Harbin Institute of Technology.
- GB 50010-2010 (2010), Code for design of concrete structures. Ministry of Housing and Urban Rural Development, Beijing, China.
- GB 50017-2017 (2017), Standard for design of steel structures. China Architecture & Building Press, Beijing, China.
- GSA (General Services Administration) (2013), Alternate path analysis and design guidelines for progressive collapse resistance. Washington DC, USA: United States General Services Administration.
- Guo, L.H., Gao, S., Fu, F. and Wang, Y. (2013), "Experimental study and numerical analysis of progressive collapse resistance of composite frames", J Constr. Steel Res., 89, 236-251. https://doi.org/10.1016/j.jcsr.2013.07.006.
- Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011.
- Khorsandnia, N., Valipour, H., Foster, S. and Amin, A. (2017), "Experimental study of progressive collapse resistance of reinforced concrete framed structures", ACI. Struct. J., 114(6), 1385-1396. https://doi.org//10.14359/51689496.
- Kiakojouri, F., Biagi, V.D., Chiaia, B. and Sheidaii, M.R. (2020), "Progressive collapse of framed building structures: Current knowledge and future prospects", Eng. Struct., 206,110061. https://doi.org/10.1016/j.engstruct.2019.110061.
- Li, G.Q., Zhang, J.Z. and Jiang, J. (2020), "Multi-storey composite framed-structures due to edge-column loss", Adv. Steel. Constr., 16(1), 20-29. https://doi.org/10.18057/IJASC.2020.16.1.3.
- Liu, X.G., Zhang, W.P., Gu, X.L. and Ye, Z.W. (2021), "Probability distribution model of stress impact factor for corrosion pits of high-strength prestressing wires", Eng. Struct., 230, 111686. https://doi.org/10.1016/j.engstruct.2020.111686.
- Meng, B., Zhong, W.H, Hao, J.P. and Tan, Z. (2019). "Improved steel frame performance against progressive collapse with infill panels", J. Constr. Steel. Res., 158, 201-212. https://doi.org/10.1016/j.jcsr.2019.03.022.
- Meng, B., Zhong, W.H, Hao, J.P, Tan, Z. and Wang, L.M. (2020). "Anti-progressive collapse performance analysis of composite frame with openings on beam web", J. Constr. Steel. Res., 173, 106251. https://doi.org/10.1016/j.jcsr.2020.106251.
- Meng, B., Li, L.D., Zhong W.H., Tan, Z. and Zheng Y.H. (2021), "Anti-collapse performance analysis of unequal span steel-concrete composite substructures", Steel Compos. Struct., 39(4), 383-399. https://doi.org/10.12989/scs.2021.39.4.383.
- Mirtaheri, M. and Abbasi, Z.M. (2016). "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
- Qian, K., Lan, X., Li, Z., Li, Y. and Fu, F. (2020). "Progressive collapse resistance of two-storey seismic configured steel sub-frames using welded connections", J. Constr. Steel. Res., 170, 106117. https://doi.org/10.1016/j.jcsr.2020.106117.
- Qian, K., Liang, S.L., Fu, F. and Fang, Q. (2019), "Progressive collapse resistance of precast concrete beam-column sub-assemblages with high-performance dry connections", Eng. Struct., 198, 109552. https://doi.org/10.1016/j.engstruct.2019.109552.
- Sasani, M. and Sagiroglu, S. (2010), "Gravity load redistribution and progressive collapse resistance of a 20-story reinforced concrete structure following loss of an interior column", ACI. Struct. J., 107(6), 636-644. https://doi.org/10.1016/j.oceaneng.2010.06.006.
- Shan, S.D., Li, S., Xu, S., Kose, M.M., Sezen, H. and Wang, S.H. (2019), "Effect of partial infill walls on collapse behavior of reinforced concrete frames", Eng. Struct., 197, 109377. https://doi.org/10.1016/j.engstruct.2019.109377.
- Tan, Z., Zhong, W.H., Tian, L.M., Meng, B., Zheng, Y.H., Song, X.Y. and Duan, S.C. (2021), "Quantitative assessment of resistant contributions of two-bay beams with unequal spans", Eng. Struct., 242,112445. https://doi.org/10.1016/j.engstruct.2021.112445.
- Tian, L.M., Wei, J.P., Huang, Q.X. and Ju, J.W. (2021a), "Collapse-resistant performance of long-span single-layer spatial grid structures subjected to equivalent sudden joint loads", J. Struct. Eng., 147(1), 04020309. https://doi:10.1061/(ASCE)ST.1943-541X.0002904.
- Tian, L.M., He, J.X., Zhang, C.B. and Bai, R. (2021b), "Progressive collapse resistance of single-layer latticed domes subjected to non-uniform snow loads", J. Constr. Steel. Res., 176, 106433. https://doi.org/10.1016/j.jcsr.2020.106433.
- Tian, L.M., Kou, Y.F., Lin, H.L. and Li, T.J. (2021c), "Interfacial bond-slip behavior between H-shaped steel and engineered cementitious composites (ECCs)", Eng. Struct., 231, 111731. https://doi.org/10.1016/j.engstruct.2020.111731.
- Tsitos, A., Mosqueda, G., Filiatrault, A. and Reinhorn, A.M. (2008), "Experimental investigation of progressive collapse of steel frames under multi-hazard extreme loading", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Wang, J.J., Wang, W. and Qian, X.D. (2019), "Progressive collapse simulation of the steel-concrete composite floor system considering ductile fracture of steel", Eng. Struct., 200, 109701. https://doi.org/10.1016/j.engstruct.2019.109701.
- Wang, W., Fang, C., Qin, X., Chen, Y.Y. and Li, L. (2016), "Performance of practical beam-to-SHS column connections against progressive collapse", Eng. Struct., 106, 332-347. https://doi.org/10.1016/j.engstruct.2015.10.040
- Yang, B. and Tan, K.H. (2012), "Numerical analyses of steel beam-column joints subjected to catenary action", J. Constr. Steel Res., 70, 1-11. https://doi.org/10.1016/j.jcsr.2011.10.007.
- Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037.
- Yi, W.J., He, Q.F., Xiao, Y. and Kunnath, S.K. (2008). "Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures", ACI. Struct. J., 105(4), 433-439. https://doi.org/doi:10.1306/03250807070.
- Yu, J., Gan, Y.P., Wu, J. and Wu, H. (2019), Effect of concrete masonry infill walls on progressive collapse performance of reinforced concrete infilled frames. Eng. Struct., 191, 179-193. https://doi.org/10.1016/j.engstruct.2019.04.048.
- Yuan, Z., Tan, K.H. and Ting, S.K. (2011), Testing of composite steel top-and-seat-and-web angle joints at ambient and elevated temperatures, Part 1: Ambient tests. Eng. Struct., 33(10), 2727-2743. https://doi.org/10.1016/j.engstruct.2011.04.027.
- Zhang, W.J., Li, G.Q. and Zhang, J.Z. (2021), "Progressive collapse mechanism of steel framed-structures subjected to a middle-column loss", Adv. Steel. Constr., 17(2), 199-209. https://doi.org/10.18057/IJASC.2021.17.2.9.
- Zhong, W.H., Tan, Z., Song, X.Y. and Meng, B. (2019), "Anti-collapse analysis of unequal span steel beam-column substructure considering the composite effect of floor slabs", Adv. Steel. Constr., 15(4), 377-385. https://doi.org/10.18057/IJASC.2019.15.4.8.
- Zhong, W.H., Tan, Z., Tian, L.M., Meng, B., Song, X.Y. and Zheng, Y.H. (2020), "Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario", Eng. Struct., 206,110143. https://doi.org/10.1016/j.engstruct.2019.110143.