References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/SCS.2020.35.1.147.
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/SCS.2020.35.6.729.
- Akgun, G. and Kurtaran, H. (2018), "Geometrically nonlinear transient analysis of laminated composite super-elliptic shell structures with generalized differential quadrature method", Int. J. Nonlinear Mech., 105, 221-241. https://doi.org/10.1016/j.ijnonlinmec.2018.05.016.
- Alasadi, A.A., Ahmed, R.A. and Faleh, N.M. (2019), "Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities", Adv. Aircraft Spacecraft Sci., 6(4), 273-282. https://doi.org/10.12989/aas.2019.6.4.273.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Ashton, J.E. and Whitney, J.M. (1970), "Theory of Laminated Plates", Progress in materials science series, Vol. 4, Lancaster, PA: Technomic Publishing Company, Inc.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
- Barbero, E.J. (2011), "Introduction to composite materials design", Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business, 552 pages.
- Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Broutman, L.J. and Krock, R.H. (Eds.), (1974), "Composite Materials", 1-7, Academic Press, New York.
- Chandrashekhar, M. and Ganguli, R. (2010), "Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties", Int. J. Mech. Sci., 52(7), 874-891. https://doi.org/10.1016/j.ijmecsci.2010.03.002.
- Chen, H., Song, H., Li, Y. and Safarpour, M. (2020), "Hygro-thermal buckling analysis of polymer-CNT-fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM", Eng. with Comput., https://doi.org/10.1007/s00366-020-01102-y.
- Cheng, X., Zhang, J., Cheng, Y., Guo, X. and Huang, W. (2020), "Effect of curing condition on mechanical properties of scarf-repaired composite laminates", Steel Compos. Struct., 37(4), 419-429. https://doi.org/10.12989/scs.2020.37.4.419.
- Daniel, G., Suong, V.H. and Stephen W.T. (2003), "Composite materials: design and applications", Boca Raton, FL: CRC Press, Taylor & Francis Group, 531 pages.
- Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
- Do, V.N.V. and Lee, C.H. (2018), "Quasi-3D higher-order shear deformation theory for thermal buckling analysis of FGM plates based on a meshless method", Aerosp. Sci. Technol., 82-83, 450-465. https://doi.org/10.1016/j.ast.2018.09.017
- Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
- Ghugal, Y.M. and Sayyad, A.S. (2013), "Stress analysis of thick laminated plates using trigonometric shear deformation theory", Int. J. Appl. Mech., 5(1), 23 pages. https://doi.org/10.1142/S1758825113500038.
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories of isotropic and anisotropic laminated plates", J. Reinf. Plast. Compos., 21(9), 775-813. https://doi.org/10.1177/073168402128988481.
- Ghumare, S.M. and Sayyad, A.S. (2019), "A new quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2), 367-380. https://doi.org/10.22055/jacm.2018.26739.1353.
- Ghumare, S.M. and Sayyad, A.S. (2017), "A new fifth-order shear and normal deformation theory for static bending and elastic buckling of P-FGM beams", Lat. Am. J. Solids Struct., 14(11), 1-19. https://doi.org/10.1590/1679-78253972.
- Han, B., Hui, W.W., Zhang, Q.C., Zhao, Z.Y., Jin, F., Zhang, Q., Lu, T.J. and Lu, B.H. (2018), "A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermo-mechanical loading", Compos. Struct., 204, 620-633. https://doi.org/10.1016/j.compstruct.2018.08.005.
- HassaineDaouadji, T. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
- Hirwani, C.K., Panda, S.K. and Mahapatra, S.S. (2018b), "Flexural strength of delaminated composite plate-An experimental validation", Int. J. Damage Mech., 27(2), 296-329. https://doi.org/10.1177/10567895 16676515.
- Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018a), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mech., 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8.
- Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm. 2019.05.039.
- Kalita, K., Dey, P., Haldar, S. and Gao, X.Z. (2020), "Optimizing frequencies of skew composite laminates with metaheuristic algorithms", Eng. with Comput., 36, 741-761. https://doi.org/10.1007/s00366-019-00728-x.
- Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates, Proceedings of the institution of mechanical engineers", Part L: J. Mater.: Design Appl., 223(2), 53-62. https://doi.org/10.1243/14644207JMDA189.
- Karamanli, A. and Aydogdu, M. (2019), "Free vibration and buckling analysis of laminated composites and sandwich micro beams using a transverse shear-normal deformable beam theory", J. Vib. Control, 26(3-4), 214-228. https://doi.org/10.1177%2F1077546319878538. https://doi.org/10.1177%2F1077546319878538
- Karamanli, A. and Vo, T. (2018), "Size dependent bending analysis of two directional functionally graded micro beams via a quasi-3D theory and finite element method", Compos. Part B: Eng., 144, 171-183. https://doi.org/10.1016/j.compositesb.2018.02.030.
- Katariya, P.V. and Panda, S.K. (2019a), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. with Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
- Katariya, P.V. and Panda, S.K. (2019b), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arabian J. Sci. Eng., 44 (2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
- Katariya, P.V., Hirwani, C.K. and Panda, S.K. (2019), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. with Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3.
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2018), "Bending and vibration analysis of skew sandwich plate", Aircr. Eng. Aerosp. Tech., 90(6), 885-895. https://doi.org/10.1108/AEAT05-2016-0087.
- Kaw, A.K. (2005), "Mechanics of composite materials", 2nd Edition, Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, 490. https://doi.org/10.1201/9781420058291.
- Khelifa, Z., Hadji, L., Hassaine Daouadji, T. and Bourada, M. (2018), "Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation", Struct. Eng. Mech., 67(2), 125-130. https://doi.org/10.12989/sem.2018.67.2.125.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kirchhoff, G.R. (1850), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. Pure App. Math., 40, 51-88.
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
- Kollar, L.P. and Springer, G.S. (2003), "Mechanics of Composite Structures", Published in the United States of America, Cambridge university press, New York, 480. . https://doi.org/10.1017/CBO9780511547140
- Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
- Li, D.H., Guo, Q.R., Xu, D. and Yang, X. (2017), "Three-dimensional micromechanical analysis models of fiber reinforced composite plates with damage", Comput. Struct., 191, 100-114. https://doi.org/10.1016/j.compstruc. 2017.06.005.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Comput., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119.
- Mantari, J.L. and Soares, C.G. (2013), "Generalized layerwise HSDT and finite element formulation for symmetric laminated and sandwich composite plates", Compos. Struct., 105(8), 319-331. https://doi.org/10.1016%2Fj.compstruct.2013.04.042. https://doi.org/10.1016%2Fj.compstruct.2013.04.042
- Matsunaga, H. (2007) "Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading", Compos. Struct., 77(2), 249-262. https://doi.org/10.1016/j.compstruct.2005.07.002.
- Mehar, K. and Panda, S.K. (2016), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP conference series: Mat. Sci. Eng., 115 (1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014.
- Mehar, K. and Panda, S.K. (2017a), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings", Int. J. Comput.Meth., 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.
- Mehar, K. and Panda, S.K. (2017b), "Numerical investigation of nonlinear thermo-mechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135.
- Mehar, K. and Panda, S.K. (2018), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Tech., 90 (1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
- Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B: Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
- Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
- Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/scs.2020.34.1.141.
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
- Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
- Nguyen, N.D., Nguyen, T.K., Vo, T.P. and Thai, H.T. (2018), "Ritz-based analytical solutions for bending, buckling and vibration behavior of laminated composite beams", Int. J. Struct. Stab. Dyn. 18(11), 1850130. https://doi.org/10.1142/S0219455418501304.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-Art", Trends Civil Eng. its Architect., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Patle, B.K., Hirwani, C.K., Singh, R.P. and Panda, S.K. (2018), "Eigenfrequency and deflection analysis of layered structure using uncertain elastic properties-a fuzzy finite element approach", Int. J. Approximate Reasoning, 98, 163-176. https://doi.org/10.1016/j.ijar.2018.04.013.
- Reddy, J.N. (1984), "A simple high-order theory of laminated composite plate", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (2004), "Mechanics of laminated composite plates and shells: theory and analysis", 2nd Ed., CRC Press LLC, 858 Pages.
- Remil, A., Benrahou, K.H., Draiche, K., Bousahla, A.A. and Tounsi, A. (2019), "A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates", Struct. Eng. Mech., 70(3), 325-337. https://doi.org/10.12989/sem.2019.70.3.325.
- Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S. R., and Alwabli, A. S. (2018), "Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2), 141-150. https://doi.org/10.12989/gae.2018.16.2.141.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
- Sarangan, S. and Singh, B.N. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Comp. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
- Sayyad, A.S. and Ghugal, Y.M. (2014), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10, 247-267. https://doi.org/1010.1007/s10999-014-9244-3.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
- Sayyad, A.S., Ghugal, Y.M. and Mhaske, B.A. (2015) "A four-variable plate theory for thermoelastic bending analysis of laminated composite plates", J. Therm. Stresses, 38(8), 904-925. https://doi.org/10.1080/01495739.2015.1040310.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007.
- Shinde, B.M. and Sayyad, A.S. (2017), "A quasi-3D polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams", Mech. Adv. Compos. Struct., 4, 139-152. https://doi.org/10.22075/macs.2017.10806.1105.
- Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1-29. https://doi.org/10.1142/S1758825117500089.
- Swaminathan, K. and Fernandes, R. (2013), "Higher order computational model for the thermoelastic analysis of cross-ply laminated composite plates", Int. J. Sci. Eng. Res., 4(5), 119-122.
- Tanzadeh, H. and Amoushahi, H. (2021), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.
- Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407(2020). https://doi.org/10.1007/s42452-020-2182-9.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Vo, T.P., Thai, H.T., Nguyen, T.K., Lanc, D. and Karamanli, A. (2017), "Flexural analysis of laminated composite and sandwich beams using a four unknown shear and normal deformation theory", Compos. Struct., 176, 388-397. https://doi.org/10.1016/j.compstruct.2017.05.041.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Zamani, H.A., Aghdam, M.M. and Sadighi, M. (2017), "Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory", Compos. Struct., 182, 25-35. https://doi.org/10.1016/j.compstruct.2017.08.101.
- Zenkour, A.M. (2007), "Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates", J. Sandw. Struct. Mater.,9(3), 213-238. https://doi.org/10.1177%2F1099636 207065675. https://doi.org/10.1177%2F1099636207065675
- Zeverdejani, M.K. and Beni, Y.T. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites", Adv. Nano Res., 8(2), 103-114. https://doi.org/10.12989/anr.2020.8.2.103.
- Zhang, P., Qi, C., Fang, H. and Sun, X. (2020), "Bending and free vibration analysis of laminated piezoelectric composite plates", Struct. Eng. Mech., 75(6), 747-769. https://doi.org/10.12989/sem.2020.75.6.747.