DOI QR코드

DOI QR Code

음의 겉보기 충전성 자료를 포함한 시간영역 유도분극 자료의 비선형 역산

Nonlinear Inversion of Time-domain Induced Polarization Data with Negative Apparent Chargeability Data

  • 조인기 (강원대학교 지질, 지구물리학부) ;
  • 김연정 (강원대학교 지구물리학과)
  • Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University) ;
  • Kim, Yeon-Jung (Department of Geophysics, Kangwon National University)
  • 투고 : 2021.09.27
  • 심사 : 2021.11.22
  • 발행 : 2021.11.30

초록

많은 경우 시간영역 유도분극 탐사에서 음의 겉보기 충전성은 잡음으로 간주되어 해석에 사용되지 않는다. 그러나 음의 겉보기 충전성은 실제 지하의 충전성 분포에 의해 발생할 수 있으며, 특정 모델의 경우 음의 겉보기 충전성이 획득된 자료의 대부분을 차지하기도 한다. 음의 겉보기 충전성은 송수신 전극과 충전성 이상대의 기하학적 위치에 의해 결정되며, 특히 쌍극자 배열을 사용할 경우 출현 빈도가 높다. 이 연구에서는 음의 겉보기 충전성 자료를 포함하는 시간영역 유도분극 탐사 2차원 모델링 및 비선형 역산에 관한 수치 실험을 통하여 음의 겉보기 충전성 자료가 역산결과에 미치는 영향을 분석하였다. 분석 결과, 음의 겉보기 충전성 자료도 지하의 충전성 분포에 대한 정보를 가지고 있으므로 역산에 포함되어야 하는 것으로 확인되었다.

Negative apparent chargeability data in time-domain induced polarization (IP) survey are very often considered as noise and rejected before the inversion stage. Negative IP data can, however, occur naturally as a consequence of the distribution of chargeable zones in the ground. In some cases, the negative apparent chargeability values may account for most of the data measured. Negative IP data are caused by the geometry of chargeable zones and electrode positions. Negative apparent chargeability data appear most frequently when a dipole-dipole array is used. In this study, the effect of negative apparent chargeability data on inversion results is analyzed through the numerical 2D time-domain IP modeling and nonlinear inversion. The results demonstrate clearly that negative apparent chargeability data have to be included in the inversion as they contain important information on the distribution of subsurface chargeability.

키워드

참고문헌

  1. Bertin, J., and Loeb, J., 1976, Experimental and theoretical aspects of induced polarization, vols. 1 and 2, Borntraeger, Berlin. https://www.schweizerbart.de/publications/detail/isbn/9783443130091/Bertin_Loeb_Induced_Polarization_Vol_I_Geoex_Monog
  2. Brandes, I., and Acworth, R. I., 2003, Intrinsic Negative Chargeability of Soft Clays, Procs. SEG 16th Geophysical Conference and Exhibition, February 2003, Adelaide. https://doi.org/10.1071/ASEG2003ab017
  3. Dahlin, T., Leroux, V., and Nissen, J., 2002, Measuring techniques in induced polarisation imaging, J. Appl. Geophys., 50, 279-298, https://doi.org/10.1190/1.9781560802594
  4. Dahlin, T., and Loke, M. H., 2015, Negative apparent chargeability in time-domain induced polarisation data, J. Appl. Geophys., 123, 322-332, http://doi.org/10.1016/j.jappgeo.2015.08.012
  5. Dey, A., and Morrison, H. F., 1979, Resistivity modeling for arbitrarily shaped two-dimensional structures, Geophys. Prosp., 27, 106-136, https://doi.org/10.1111/j.1365-2478.1979.tb00961.x
  6. Fink, J. B., McAlister, E. O., Sternberg, B. K., Wieduwilt, W. G., and Ward, S. H. (Eds.), 1990, Induced Polarization Applications and Case Histories, SEG. https://doi.org/10.1190/1.9781560802594
  7. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., and Christiansen, A. V., 2012, Mapping of landfills using time-domain spectral induced polarization data: the Eskelund case study, Near Surf. Geophys., 10, 575-586, http://doi.org/10.3997/1873-0604.2012046
  8. Gasperikova, E., Cuevas, N. H., and Frank Morrison, H., 2005, Natural field induced polarization for mapping of deep mineral deposits: a field example from Arizona, Geophysics, 70(6), B61-B66, https://doi.org/10.1190/1.2122410
  9. Hohmann, G. W., and Raiche, A. P., 1994, Inversion of controlled-source electromagnetic data, in Nabighian, M.N. ed., Electromagnetic methods in applied geophysics, vol. 1, Theory: SEG, 1-132, https://doi.org/10.1190/1.9781560802631
  10. Lee, K. S., and Cho, I. K., 2020, Negative apparent resistivity in surface resistivity measurements, J. Appl. Geophys., 176, 1-9, doi:10.1016/j.jappgeo.2020.104010
  11. Leroux, V., Dahlin, T., and Svensson, M., 2007, Dense resistivity and IP profiling for a landfill restoration project at Harlov, Southern Sweden, Waste Manag. Res., 25(1), 49-60, doi: 10.1177/0734242X07073668
  12. Loeb, J., 1976, Experimental and Theoretical Aspects of Induced Polarization, vol. 2, Macroscopic and Microscopic Theories, Gebruder Borntraeger, Berlin. https://catalogue.nla.gov.au/Record/835224
  13. Oldenburg, D. W., and Li, Y., 1994, Inversion of induced polarization data, Geophysics, 59, 1327-1341, https://doi.org/10.1190/1.1443692
  14. Queralt, P., Pous, J., and Marcuello, A., 1991, 2D resistivity modeling: An approach to arrays parallel to the strike direction, Geophysics, 56(7), 941-950, https://doi.org/10.1190/1.1443127
  15. Schlumberger, C., 1920, Etude sur la Prospection Electrique du Sous-sol., Gauthier-Villars, Paris. https://www.worldcat.org/title/etude-sur-la-prospection-electrique-du-sous-sol/oclc/9862310
  16. Seigel, H. O., 1959, Mathematical formulation and type curves for induced polarization, Geophysics, 24, 547-565, https://doi.org/10.1190/1.1438625
  17. Seigel, H. O., Nabighian, M., Parasnis, D. S., and Vozoff, K., 2007, The early history of the induced polarization method, Lead. Edge, 26(3), 312-321, https://doi.org/10.1190/1.2715054
  18. Slater, L. D., and Sandberg, S. K., 2000, Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients, Geophysics, 65, 408-420, https://doi.org/10.1190/1.1444735
  19. Sumner, J. S., 1976, Principles of Induced Polarization for Geophysical Exploration, Elsevier, Amsterdam. https://books.google.co.kr/books?hl=ko&lr=&id=nBEXTYVjFswC&oi=fnd&pg=PP1&dq=Sumner,+J.+S.,+1976,+Principles+of+Induced+Polarization+for+Geophysical+Exploration,+Elsevier,+Amsterdam.&ots=0Ebo0j6z6T&sig=PE3Kh0ORe28NiDuUslWhjY2y6oM#v=onepage&q=Sumner%2C%20J.%20S.%2C%201976%2C%20Principles%20of%20Induced%20Polarization%20for%20Geophysical%20Exploration%2C%20Elsevier%2C%20Amsterdam.&f=false
  20. Vanhala, H., 1997, Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method, Geophys. Prosp., 45, 303-326, https://doi.org/10.1046/j.1365-2478.1997.00338.x
  21. Ward, S. H., 1990, Resistivity and induced polarization methods, Geotech. and Environ., Geophys., 1, 147-189, https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1204962 https://doi.org/10.1190/1.9781560802785.ch6
  22. Zarif, F., Kessouri, P., and Slater, L., 2017, Recommendations for field-scale induced polarization (IP) data acquisition and interpretation, J. Envion. Eng. Geophys., 22(4), 395-410, https://doi.org/10.2113/JEEG22.4.395
  23. Zonge, K. L., and Wynn, J. C., 1975, Recent advances and applications in complex resistivity measurements, Geophysics, 40(5), 851-864, https://doi.org/10.1190/1.1440572