CMC SURFACES WITH CONSTANT CONTACT ANGLE ALONG A CIRCLE

Sung-Hong Min*

Abstract

In this paper, we give a characterization of a Delaunay surface in \mathbb{R}^{3}. Let Σ be a CMC- H surface in \mathbb{R}^{3} with $H \neq 0$. If Σ meets a plane with constant contact angle along a circle, then it is rotationally symmetric, i.e., Σ is part of a Delaunay surface.

1. Introduction

Björling first considered the problem to find a minimal surface containing a given real-analytic curve in its interior with the prescribed tangent planes. Known as the Björling problem, this was proved explicitly by Schwarz. Specifically, let $\gamma: J \rightarrow \mathbb{R}^{3}$ be a regular real-analytic curve defined on an interval J and $n: J \rightarrow \mathbb{R}^{3}$ be a real-analytic vector field along γ with $\|n\|=1$ and $\left\langle\gamma^{\prime}, n\right\rangle=0$. Then there is a simply connected domain D containing J, on which the unique analytic extension $\tilde{\gamma}($ resp. $\tilde{n}): D \rightarrow \mathbb{R}^{3}$ of $\gamma($ resp. $n)$ exists, such that a $\operatorname{map} X: D \rightarrow \mathbb{R}^{3}$ defined by

$$
\begin{equation*}
X(u, v)=\operatorname{Re}\left(\gamma(z)-i \int_{z_{0}}^{z} \tilde{n}(w) \times \tilde{\gamma}^{\prime}(w) d w\right) \tag{1.1}
\end{equation*}
$$

where $z=u+i v \in D, z_{0} \in J$, represents the unique minimal immersion such that $\left.X\right|_{J}=\gamma$ and $n \perp X$ along γ. Using (1.1), Schwarz obtained symmetry principles for a minimal surface Σ as follows: (a) If Σ intersects a plane orthogonally, then there is a reflection symmetry with respect to the plane. (b) If Σ contains a straight line, then there is a rotation symmetry with respect to the straight line. The formula (1.1) has long been used to find examples of minimal surfaces. On the other

[^0]hand, Pyo [6] obtained a characterization of a catenoid by using (1.1) as follows.

Theorem ([6]). Let Σ be an immersed minimal surface in \mathbb{R}^{3}. If Σ meets a plane with constant contact angle along a circle, then it is part of a catenoid.

The holomorphicity of the Gauss map plays an important role in the Weierstrass representation formula for a minimal surface and hence in the formula (1.1). Although the Gauss map of a non-minimal CMC surface is just harmonic, Dorfmeister-Pedit-Wu [3] obtained a Weierstrass type representation formula for CMC surfaces in \mathbb{R}^{3}, which is called the DPW method. Any immersion in \mathbb{R}^{3} with the constant mean curvature can be constructed from a $\operatorname{Lie}(\Lambda \operatorname{SL}(2, \mathbb{C})$)-valued holomorphic 1 -form

$$
\hat{\xi}=\sum_{j=-1}^{\infty} A_{j} \lambda^{j} d z,
$$

where $\Lambda \mathrm{SL}(2, \mathbb{C})$ is the loop group of maps $\phi: \mathbb{S}^{1} \rightarrow \mathrm{SL}(2, \mathbb{C})$ with a twisting condition and $\operatorname{Lie}(\Lambda \operatorname{SL}(2, \mathbb{C}))$ is the Lie algebra of the loop group $\Lambda \mathrm{SL}(2, \mathbb{C})$. Motivated from Schwarz's result, for given real-analytic Björling data $\{\gamma, \nu\}$, and a non-zero constant H, Brander-Dorfmeister [2] proved the Björling problem for non-minimal CMC surfaces by using the DPW method.

Theorem ([2]). Let $\gamma: J \rightarrow \mathbb{R}^{3}$ be a regular real-analytic curve and $\nu: J \rightarrow \mathbb{R}^{3}$ be a non-vanishing real-analytic vector field along γ such that $\left\langle\nu, \gamma^{\prime}\right\rangle=0$ along γ. Let H be a non-zero real number.

There is a CMC- H immersion $X: D \rightarrow \mathbb{R}^{3}$, where D is some open subset of \mathbb{C} containing J, such that the restriction $\left.X\right|_{J}$ coincides with γ, and such that the tangent planes to the immersion along γ are spanned by ν and γ^{\prime}.

Moreover, the surface X is unique in the following sense: If \tilde{X} is any other solution, then, for every point $x_{0} \in J$, there exists a neighborhood $N=\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \times(-\delta, \delta) \subset \mathbb{C}$ of $z_{0}=\left(x_{0}, 0\right) \in D$ such that $\left.X\right|_{N}=\left.\widetilde{X}\right|_{N}$.

In this paper, we deal with a characterization of a Delaunay surface in \mathbb{R}^{3} analogous to the result obtained by Pyo [6]. Let Σ be a surface in \mathbb{R}^{3} with the constant mean curvature $H \neq 0$. Suppose that Σ meets a plane with constant contact angle along a circle. Then we can compute the extended frame for Σ by using the method in [2], and hence we have the following result.

Theorem 1.1. Let Σ be a CMC- H surface in \mathbb{R}^{3} with $H \neq 0$. If Σ meets a plane with constant contact angle along a circle, then it is rotationally symmetric, i.e., Σ is part of a Delaunay surface.

2. Preliminaries

In this section, we give some basic notions and briefly introduce the construction of a CMC surface via integrable system method. We mainly refer to $[1,2,4]$.

Let D be a simply connected domain in \mathbb{R}^{2}. Let Σ be a surface in \mathbb{R}^{3} and $X: D \rightarrow \mathbb{R}^{3}$ be a conformal immersion of Σ with the metric $d s^{2}=$ $4 e^{2 \varphi}\left(d u^{2}+d v^{2}\right)$. Let $z=u+i v$ be the canonical complex coordinate on $D \subset \mathbb{C} \simeq \mathbb{R}^{2}$. Then

$$
\begin{equation*}
\left\langle X_{z}, X_{z}\right\rangle=\left\langle X_{\bar{z}}, X_{\bar{z}}\right\rangle=0 \text { and }\left\langle X_{z}, X_{\bar{z}}\right\rangle=2 e^{2 \varphi} \tag{2.1}
\end{equation*}
$$

The mean curvature of Σ is defined by

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right),
$$

where κ_{1} and κ_{2} are principal curvatures of Σ. A surface Σ is said to be a constant mean curvature surface if H is constant, simply we call it a CMC surface, or a CMC-H surface when we emphasize the value H. Denote the unit normal vector field of Σ by $\mathrm{n}=\frac{X_{u} \times X_{v}}{\left|X_{u} \times X_{v}\right|}$. It is well known that $\triangle_{\Sigma} X=2 H \mathrm{n}$, and hence

$$
H=\frac{1}{8} e^{-2 \varphi}\left\langle X_{z \bar{z}}, \mathrm{n}\right\rangle
$$

Define the Hopf differential Q as

$$
Q=\left\langle X_{z z}, \mathrm{n}\right\rangle
$$

From these, we can compute that

$$
\begin{equation*}
X_{z z}=2 \varphi_{z} X_{z}+Q \mathrm{n}, X_{\bar{z} \bar{z}}=2 \varphi_{\bar{z}} X_{\bar{z}}+\bar{Q} \mathrm{n}, X_{z \bar{z}}=2 H e^{2 \varphi} \mathrm{n} \tag{2.2}
\end{equation*}
$$

The Lie group $\mathrm{SU}(2)$ is a matrix group consists of all 2×2 unitary matrices

$$
\begin{aligned}
\mathrm{SU}(2) & =\left\{A \in \mathrm{GL}(2, \mathbb{C}) \mid A A^{\mathrm{H}}=I, \operatorname{det} A=1\right\} \\
& =\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)\left|a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1\right\},\right.
\end{aligned}
$$

where $A^{\mathrm{H}}=\bar{A}^{\mathrm{T}}$ is the conjugate transpose of A. Denoted by $\mathfrak{s u}(2)$ the Lie algebra of $\mathrm{SU}(2)$. It is a 3 -dimensional real vector space consists of 2×2 traceless skew-Hermitian complex matrices:

$$
\mathfrak{s u}(2)=\left\{\sigma \in \mathfrak{g l}(2, \mathbb{C}) \mid \sigma+\sigma^{\mathrm{H}}=0, \operatorname{tr} \sigma=0\right\}
$$

As a basis, take the following three matrices:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

There is an isometry between \mathbb{R}^{3} and $\mathfrak{s u}(2)$ that maps $(x, y, z) \in \mathbb{R}^{3}$ to the following matrix in $\mathfrak{s u}(2)$

$$
x \sigma_{1}+y \sigma_{2}+z \sigma_{3}=\left(\begin{array}{cc}
i z & y-i x \tag{2.3}\\
-y-i x & -i z
\end{array}\right)
$$

with the metric $\langle\sigma, \tau\rangle=-\frac{1}{2} \operatorname{tr}(\sigma \tau)$ for any $\sigma, \tau \in \mathfrak{s u}(2)$. In particular, $\left\langle\sigma_{j}, \sigma_{k}\right\rangle=\delta_{j k}$ for all j, k. From now on, we identify \mathbb{R}^{3} with $\mathfrak{s u}(2)$.

Note that $\left\{X_{u}, X_{v}, \mathrm{n}\right\}$ forms an orthogonal frame of $\Sigma \subset \mathbb{R}^{3} \simeq \mathfrak{s u}(2)$. Denote a $\mathrm{SU}(2)$-valued frame by $F: D \rightarrow \mathrm{SU}(2)$ such that

$$
\begin{equation*}
F \sigma_{1} F^{-1}=\frac{X_{u}}{\left|X_{u}\right|}, F \sigma_{2} F^{-1}=\frac{X_{v}}{\left|X_{v}\right|}, F \sigma_{3} F^{-1}=\mathrm{n} \tag{2.4}
\end{equation*}
$$

It yields that

$$
X_{z}=-2 i e^{\varphi} F\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) F^{-1}, X_{\bar{z}}=-2 i e^{\varphi} F\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) F^{-1}
$$

By choosing coordinates in \mathbb{R}^{3}, we may assume that $F\left(z_{0}\right)=I$ for a fixed point $z_{0} \in D$. Differentiating X_{z} and $X_{\bar{z}}$, with the equations in (2.2), the $\mathfrak{s u}(2)$-valued Maurer-Cartan form for F,

$$
\omega=F^{-1} d F=U d z+V d \bar{z}
$$

can be computed as follows (see $[1,2,4]$):

$$
\begin{align*}
& U=F^{-1} F_{z}=\frac{1}{2}\left(\begin{array}{cc}
\varphi_{z} & -2 e^{\varphi} H \\
e^{-\varphi} Q & -\varphi_{z}
\end{array}\right) \\
& V=F^{-1} F_{\bar{z}}=\frac{1}{2}\left(\begin{array}{cc}
-\varphi_{\bar{z}} & -e^{-\varphi} \bar{Q} \\
2 e^{\varphi} H & \varphi_{\bar{z}}
\end{array}\right) \tag{2.5}
\end{align*}
$$

The compatibility condition $U_{\bar{z}}-V_{z}-[U, V]=0$, which is equivalent to the Maurer-Cartan equation $d \omega+\omega \wedge \omega=0$, can be written as

$$
\begin{array}{lr}
\varphi_{z \bar{z}}+e^{2 \varphi} H^{2}-\frac{1}{4} e^{-2 \varphi}|Q|^{2}=0 ; & \text { (Gauss equation) } \\
Q_{\bar{z}}=2 e^{2 \varphi} H_{z}, & (\text { Codazzi equation) } \tag{2.6}
\end{array}
$$

where $[U, V]=U V-V U$.
Let $\lambda \in \mathbb{S}^{1}$ be a spectral parameter. Denoted by $\Lambda \operatorname{SU}(2)$ the loop group of maps $\phi: \mathbb{S}^{1} \rightarrow \mathrm{SU}(2)$ with a twisting condition $\phi(-\lambda)=$ $\sigma_{3} \phi(\lambda) \sigma_{3}: \phi$ is an even (resp. odd) function in λ on its diagonal (resp. off-diagonal). Let Lie($\Lambda \operatorname{SU}(2))$ be the Lie algebra of $\Lambda \mathrm{SU}(2)$. Define a $\operatorname{Lie}(\Lambda \mathrm{SU}(2))$-valued 1 -form $\hat{\omega}$, by adding a spectral parameter λ to ω, as follows.

$$
\hat{\omega}=\hat{U} d z+\hat{V} d \bar{z},
$$

where

$$
\hat{U}=\frac{1}{2}\left(\begin{array}{cc}
\varphi_{z} & -2 e^{\varphi} H \lambda^{-1} \tag{2.7}\\
e^{-\varphi} Q \lambda^{-1} & -\varphi_{z}
\end{array}\right), \hat{V}=\frac{1}{2}\left(\begin{array}{cc}
-\varphi_{\bar{z}} & -e^{-\varphi} \bar{Q} \lambda \\
2 e^{\varphi} H \lambda & \varphi_{\bar{z}}
\end{array}\right) .
$$

Then $\hat{\omega}$ satisfies the Maurer-Cartan equation for all $\lambda \in \mathbb{S}^{1}$ if and only if Σ is a CMC surface in \mathbb{R}^{3}. More precisely, the following theorem holds.

Theorem ([2, 4]). Let $X: D \rightarrow \mathbb{R}^{3}$ be a conformal immersion. Then the mean curvature H is constant if and only if there is an extended frame \hat{F} and the Maurer-Cartan 1-form $\hat{\omega}=\hat{F}^{-1} d \hat{F}$ such that $d \hat{\omega}+\hat{\omega} \wedge$ $\hat{\omega}=0$ for $\lambda \in \mathbb{S}^{1}$.

Here, $\hat{F}: D \rightarrow \Lambda \mathrm{SU}(2)$ is said to be an extended frame for a CMC surface if it is obtained by integrating $\hat{\omega}$ with the initial condition $\hat{F}\left(z_{0}\right)=I$ for $\lambda \in \mathbb{S}^{1}$, and $\left.\hat{F}\right|_{\lambda=1}=F$.

Bobenko gave the expression for a CMC immersion in terms of an extended frame. For $H \neq 0$ and $\lambda \in \mathbb{S}^{1}$, the Sym-Bobenko formula is given by

$$
\mathscr{S}_{\lambda}(\hat{F})=-\frac{1}{2 H}\left(\hat{F} \sigma_{3} \hat{F}^{-1}+2 i \lambda\left(\partial_{\lambda} \hat{F}\right) \hat{F}^{-1}\right) .
$$

Theorem ($[1,2,4]$). Let $X: D \rightarrow \mathbb{R}^{3}$ be a CMC- H immersion. Let $\hat{F}: D \rightarrow \Lambda \mathrm{SU}(2)$ be an extended frame described as above. Then the immersion X can be written as

$$
X(z)=\mathscr{S}_{1}(\hat{F}(z))-\mathscr{S}_{1}\left(\hat{F}\left(z_{0}\right)\right)+X\left(z_{0}\right) .
$$

Conversely, for any φ and Q satisfying (2.6), if $\hat{F} \in \Lambda \mathrm{SU}(2)$ is a solution of the system $\hat{F}^{-1} \hat{F}_{z}=\hat{U}$ and $\hat{F}^{-1} \hat{F}_{\bar{z}}=\hat{V}$, where \hat{U} and \hat{V} are given as in (2.7), with $\operatorname{det} \hat{F}=1$, then the Sym-Bobenko formula $\mathscr{S}_{\lambda}(\hat{F})$ describes a conformal CMC- H immersion into \mathbb{R}^{3} with metric $d s^{2}=4 e^{2 \varphi}\left(d u^{2}+d v^{2}\right)$ and the Hopf differential $\lambda^{-2} Q$.

Dorfmeister-Pedit-Wu [3] obtained a Weierstrass type representation formula for CMC surfaces in \mathbb{R}^{3} : Any CMC immersion in \mathbb{R}^{3} can be constructed from a $\operatorname{Lie}(\Lambda S L(2, \mathbb{C}))$-valued holomorphic 1-form

$$
\hat{\xi}=\sum_{j=-1}^{\infty} A_{j} \lambda^{j} d z \text { with } A_{-1}=\left(\begin{array}{cc}
0 & a_{-1} \\
b_{-1} & 0
\end{array}\right), a_{-1} \neq 0 .
$$

where $\Lambda \operatorname{SL}(2, \mathbb{C})$ is the loop group of maps $\phi: \mathbb{S}^{1} \rightarrow \mathrm{SL}(2, \mathbb{C})$ with a twisting condition and $\operatorname{Lie}(\Lambda \operatorname{SL}(2, \mathbb{C}))$ is the Lie algebra of the loop group $\Lambda \mathrm{SL}(2, \mathbb{C})$. We call $\hat{\xi}$ a holomorphic potential.

In this regard, Brander-Dorfmeister [2] proved the Björling problem for non-minimal CMC surfaces via DPW method. If a solution of the Björling problem exists, then the extension F of F_{0} satisfies (2.1), (2.4) and (2.5). Therefore we use the conditions (2.1), (2.4) and (2.5) as necessary conditions for the existence of the extended frame \hat{F}_{0} along J. We summarize the construction in [2] as the following five steps:

1. Translate given real-analytic Björling data $\{\gamma, \nu\}$ in terms of $\mathfrak{s u}(2)$;
2. Let F_{0} be a frame on an interval J. Determine the conformal metric φ on J by using (2.1) and (2.4);
3. Construct the extended frame \hat{F}_{0}, a solution of $\hat{F}_{0}^{-1} d \hat{F}_{0}=\hat{\omega}_{0}$ with the initial condition along J, where (2.5) determines $\hat{\omega}_{0}$;
4. Find a holomorphic extension $\hat{\omega}$, which is called the boundary potential, of $\hat{\omega}_{0}$ on a simply connected domain D containing J;
5. Apply the DPW method.

3. Proof of Theorem 1.1

Definition 3.1. Let $P \subset \mathbb{R}^{3}$ be a plane normal to n_{P}. We say that a surface Σ meets P with constant contact angle β along a curve γ if $\gamma=\Sigma \cap P$ and $\left\langle\mathrm{n}, \mathrm{n}_{P}\right\rangle=\cos \beta$ is constant along γ.

Proof of Theorem 1.1. Let P be a plane normal to $\mathrm{n}_{P}=(0, \sin \beta, \cos \beta)$ passing through the origin in \mathbb{R}^{3}, that is,

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y \sin \beta+z \cos \beta=0\right\} .
$$

Denoted by γ a circle of radius r centered at the origin that lies in P. Parametrize γ as follows.

$$
\gamma(u)=r\left(\sin \frac{2 u}{r}, \cos \beta \cos \frac{2 u}{r},-\sin \beta \cos \frac{2 u}{r}\right), u \in J
$$

where J is an open interval such that $0 \in J$. Without loss of generality, we may assume that Σ meets a plane P with constant contact angle β along γ, by a rigid motion of \mathbb{R}^{3}. The conormal vector field ν of Σ along γ satisfies that

$$
\left\langle\nu, \gamma^{\prime}\right\rangle=0,\left\langle\nu, \mathrm{n}_{P}\right\rangle=\sin \beta
$$

Since $\left\{\gamma, \gamma^{\prime}, \mathrm{n}_{P}\right\}$ are mutually orthogonal along γ, we have

$$
\begin{aligned}
\nu & =\cos \beta \frac{\gamma}{|\gamma|}+\sin \beta \mathrm{n}_{P} \\
& =\left(\cos \beta \sin \frac{2 u}{r}, \sin ^{2} \beta+\cos ^{2} \beta \cos \frac{2 u}{r}, \cos \beta \sin \beta\left(1-\cos \frac{2 u}{r}\right)\right) .
\end{aligned}
$$

Note that γ and ν are both real analytic. We claim that the solution of the Björling problem with respect to the analytic data $\{\gamma, \nu\}$ described above and $H \neq 0$ is a Delaunay surface. If the claim holds, then the conclusion follows by the maximum principle for CMC surfaces (or by the uniqueness theorem of [2]).

From (2.3), we identify γ^{\prime} and ν with matrices in $\mathfrak{s u}(2)$ as follows.

$$
\begin{aligned}
& \gamma^{\prime}(u)=2\left(\begin{array}{cc}
i \sin \beta \sin \frac{2 u}{r} & -\cos \beta \sin \frac{2 u}{r}-i \cos \frac{2 u}{r} \\
\cos \beta \sin \frac{2 u}{r}-i \cos \frac{2 u}{r} & -i \sin \beta \sin \frac{2 u}{r}
\end{array}\right) \\
& \nu(u)=\left(\begin{array}{ll}
i \cos \beta \sin \beta\left(1-\cos \frac{2 u}{r}\right) & \sin ^{2} \beta+\cos ^{2} \beta \cos \frac{2 u}{r} \\
-\sin ^{2} \beta-\cos ^{2} \beta \cos \frac{2 u}{r} & -i \cos \beta \sin \frac{2 u}{r} \\
-i \cos \beta \sin \frac{2 u}{r} & -i \cos \beta \sin \beta\left(1-\cos \frac{2 u}{r}\right)
\end{array}\right) .
\end{aligned}
$$

If there is a solution of the Björling problem, then there is a $\mathrm{SU}(2)$-frame F satisfies (2.1) and (2.4). Thus, we let F_{0} to be a frame along J such that

$$
\begin{align*}
& F_{0} \sigma_{1} F_{0}^{-1}=\frac{1}{2 e^{\varphi}} \gamma^{\prime}(u) \\
& F_{0} \sigma_{2} F_{0}^{-1}=\nu(u) \tag{3.1}
\end{align*}
$$

where the second equality follows from the necessary condition $X_{v}=$ $2 e^{\varphi} \nu$ to make X to be a solution of the Björling problem. Taking the
determinant to the first equality in (3.1) along J, we have

$$
\begin{equation*}
\varphi=\log \left(\frac{1}{2} \sqrt{\operatorname{det}\left(\gamma^{\prime}(u)\right)}\right)=0 \tag{3.2}
\end{equation*}
$$

Put $F_{0}=\left(\begin{array}{cc}A & B \\ -\bar{B} & \bar{A}\end{array}\right) \in \mathrm{SU}(2)$. Then

$$
\begin{aligned}
F_{0} \sigma_{1} F_{0}^{-1} & =\left(\begin{array}{cc}
-2 i \operatorname{Re}(A \bar{B}) & -i\left(A^{2}-B^{2}\right) \\
-i\left(\bar{A}^{2}-\bar{B}^{2}\right) & 2 i \operatorname{Re}(A \bar{B})
\end{array}\right) \\
F_{0} \sigma_{2} F_{0}^{-1} & =\left(\begin{array}{cc}
2 i \operatorname{Im}(A \bar{B}) & A^{2}+B^{2} \\
-\bar{A}^{2}-\bar{B}^{2} & -2 i \operatorname{Im}(A \bar{B})
\end{array}\right)
\end{aligned}
$$

The equations (3.1) and (3.2) yield that

$$
\begin{aligned}
& 2 \operatorname{Re}(A \bar{B})=-\sin \beta \sin \frac{2 u}{r} \\
& 2 \operatorname{Im}(A \bar{B})=\cos \beta \sin \beta\left(1-\cos \frac{2 u}{r}\right) \\
& A^{2}-B^{2}=\cos \frac{2 u}{r}-i \cos \beta \sin \frac{2 u}{r} \\
& A^{2}+B^{2}=\sin ^{2} \beta+\cos ^{2} \beta \cos \frac{2 u}{r}-i \cos \beta \sin \frac{2 u}{r}
\end{aligned}
$$

With the initial condition $F_{0}(0)=I$, the unique $\mathrm{SU}(2)$ frame F_{0} is determined to be

$$
F_{0}=\left(\begin{array}{cc}
\cos \frac{u}{r}-i \cos \beta \sin \frac{u}{r} & -\sin \beta \sin \frac{u}{r} \\
\sin \beta \sin \frac{u}{r} & \cos \frac{u}{r}+i \cos \beta \sin \frac{u}{r}
\end{array}\right)
$$

along J. Differentiating the frame F_{0} with respect to u, we have

$$
F_{0}^{-1}\left(F_{0}\right)_{u}=\frac{1}{r}\left(\begin{array}{cc}
-i \cos \beta & -\sin \beta \\
\sin \beta & i \cos \beta
\end{array}\right)
$$

For an extension F of F_{0} satisfies (2.5),

$$
F^{-1} F_{u}=U+V=\frac{1}{2}\left(\begin{array}{cc}
\varphi_{z}-\varphi_{\bar{z}} & -2 e^{\varphi} H-e^{-\varphi} \bar{Q} \\
2 e^{\varphi} H+e^{-\varphi} Q & -\varphi_{z}+\varphi_{\bar{z}}
\end{array}\right)
$$

and $F^{-1} F_{u}=F_{0}^{-1}\left(F_{0}\right)_{u}$ along J. Comparing these two values directly, along J,

$$
\begin{aligned}
\varphi_{z} & =-\frac{i}{r} \cos \beta \\
Q & =\frac{2}{r} \sin \beta-2 H
\end{aligned}
$$

because $\varphi_{u}=\varphi_{z}+\varphi_{\bar{z}}=0$ along J. By (2.7), along J,

$$
\begin{aligned}
\hat{\omega}_{0}= & \frac{1}{2}\left\{\left(\begin{array}{cc}
-\frac{i}{r} \cos \beta & -2 H \lambda^{-1} \\
\left(\frac{2}{r} \sin \beta-2 H\right) \lambda^{-1} & \frac{i}{r} \cos \beta
\end{array}\right)\right. \\
& \left.+\left(\begin{array}{cc}
-\frac{i}{r} \cos \beta & \left(-\frac{2}{r} \sin \beta+2 H\right) \lambda \\
2 H \lambda & \frac{i}{r} \cos \beta
\end{array}\right)\right\} d u,
\end{aligned}
$$

and hence the extended frame \hat{F}_{0} can be determined by integrating $\hat{\omega}_{0}$ along J. Extend $\hat{\omega}_{0}$ holomorphically, we obtain the boundary potential as follows.

$$
\hat{\omega}=\left(\begin{array}{cc}
-\frac{i}{r} \cos \beta & \left(H-\frac{1}{r} \sin \beta\right) \lambda-H \lambda^{-1} \\
H \lambda-\left(H-\frac{1}{r} \sin \beta\right) \lambda^{-1} & \frac{i}{r} \cos \beta
\end{array}\right) d z
$$

By Kilian [5], $\hat{\omega}$ coincides with the holomorphic potential of a Delaunay surface for any $r>0, \beta$, and $H \neq 0$. This proves the claim.

References

[1] A. I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new integrable cases, Harmonic maps and integrable systems, Aspects Math., no. E23, Friedr. Vieweg, Braunschweig, (1994), 83-127.
[2] D. Brander, J. F. Dorfmeister, The Björling problem for non-minimal constant mean curvature surfaces, Comm. Anal. Geom., 18 (2010), no. 1, 171-194.
[3] J. F. Dorfmeister, F. Pedit, and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom., 6 (1998), no. 4, 633-668.
[4] S. Fujimori, S. Kobayashi, W. Rossman, Loop group methods for constant mean curvature surfaces, arXiv:math/0602570v2 [math.DG].
[5] M. Kilian, On the associated family of Delaunay surfaces, Proc. Amer. Math. Soc., 132 (2004), no. 10, 3075-3082.
[6] J. Pyo, Minimal annuli with constant contact angle along the planar boundaries, Geom. Dedicata., 146 (2010), 159-164.
*
Department of Mathematics
Chungnam National University
Daejeon, 34134, Republic of Korea
E-mail: sunghong.min@cnu.ac.kr

[^0]: Received August 31, 2021; Accepted October 21, 2021.
 2010 Mathematics Subject Classification: Primary 53A10; Secondary 53C42.
 Key words and phrases: Delaunay surface, constant mean curvature surface, constant contact angle.

