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FIBONACCI SEQUENCES IN kTH POWER RESIDUES

Youchan Chung, Eunyool Jang, Jinseo Park†, and Sanghoon
Park

Abstract. In this paper, we find all the prime numbers p that
satisfy the following statement. If a positive integer k is a divisor of
p− 1, then there is a sequence consisting of all k-th power residues
modulo p, satisfying the recurrence equation of the Fibonacci se-
quence modulo p.

1. Introduction

Let us consider of the sequence (1,4,5,9,3). This sequence, consists
of all of the quadratic residues modulo 11, satisfies the definition of the
Fibonacci sequence with modulo 11, that is

1 + 4 ≡ 5 (mod 11), 4 + 5 ≡ 9 (mod 11),

5 + 9 ≡ 3 (mod 11), 9 + 3 ≡ 1 (mod 11).

In addition, the sequence (1,24,25,20,16,7,23) includes all of the 4th
power residues modulo 29, and likewise this sequence satisfies the defini-
tion of Fibonacci sequence with respect to modulo 29. In [1], Alexandru
Gica proved the following Theorem.

Theorem 1.1. If p > 2 is a prime number, there exists a sequence
(an)n>0 such that an+2 ≡ an+1 + an (mod p) for any positive integer n,

an is periodic modulo p with period p−1
2 and{

an | 1 ≤ n ≤
p− 1

2

}
=
{
b2 | b ∈ F∗p

}
if and only if
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1. p ≡ 1, 4 (mod 5) and

2. ord α = p−1
2 or ord β = p−1

2 , where α = 1+
√
5

2 and β = 1−
√
5

2 .

In the above theorem, F∗p is the multiplicative group of the field of
the residues modulo p and an is the class of an modulo p. Then it is
natural to ask the following problem.

Problem 1.1. Let p > 2 be a prime number and k be a positive
integer with k | p − 1. What are the conditions of the prime number p
which satisfies the following statement?
There exists a sequence (an)n≥1 such that an+2 ≡ an+1 + an (mod p)

for any positive integer n, an is periodic modulo p with period p−1
k and

{an | n ∈ N} =
{
bk | b ∈ F∗p

}
,

where F∗p is reduced residue system by p.

This problem is the conjecture of A. Gica in [1]. In this paper, we
prove the following theorem which is the answer of the conjecture.

Theorem 1.2. Let n be the positive integer and p > 2 be a prime
number except 5. There exists a sequence (an)n≥1 such that an+2 ≡
an+1 + an (mod p), an is periodic modulo p with period p−1

k and{
an | 1 ≤ n ≤

p− 1

k

}
=
{
bk | b ∈ F∗p

}
if and only if the prime number p satisfies the following conditions.

1. p ≡ ±1 (mod 5)

2. ord α = p−1
k or ord β = p−1

k , where α = 1+
√
5

2 and β = 1−
√
5

2 .

This theorem can be considered as a generalization of the Theorem

1.1. In Theorem 1.2, if
(
5
p

)
= 1, then there exists a positive integer

m ≤ p−1
2 such that m2 ≡ 5 (mod p). We denote m =

√
5. If p ≡ ±1

(mod 5) and ord α = p−1
k or ord β = p−1

k , then two roots of the equation

x2 − x− 1 = 0

are x = 1±
√
5

2 . Hence, α2 ≡ α + 1 (mod p) and β2 ≡ β + 1 (mod p).

In the case of ord α = p−1
k , if we define an =αn, then the sequence an

safisfies the congrunece equation

an+2 ≡ an+1 + an (mod p).

At this point, let us prove the following lemma.
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Lemma 1.3. If ord γ | p−1k , then γ is kth power residue of modulo p.

Proof. Let g be the primitive root of modulo p. Then, we can denote

γ ≡ gc (mod p).

Because γ
p−1
k ≡ 1 (mod p), we have

g
c(p−1)

k ≡ 1 (mod p).

It follows that k | c, so γ is kth power residue of modulo p.

By Lemma 1.3, the sequence (an) exists as an = αn. In the case

of ord β = p−1
k , the sequence (an) exists as an = βn. Replacing the

sequence (an)n≥1 with the sequence
(
bn = an

a1

)
n≥1

which has the same

properties as the initial one, we can suppose that a1 = 1 and a2 = x 6≡ 1
(mod p). On the other hand, the proof of the first statement, p ≡ ±1
(mod 5), is similar to the proof in the previous papers(see [1, p.69] and
[2, p.157]), because k is a divisor of p−1 and the period of the sequence
(an) is a divisor of p− 1.

2. The case k ≡ 1 (mod 2).

Because the first statement of the theorem has been proved, we prove
the second statement of the theorem when k ≡ 1(mod2). Because a1 = 1
and a2 = x 6≡ 1 (mod p), we have

(2.1) an+2 ≡ Fn + xFn+1 (mod p)

for all positive integers n, where (Fn) is the Fibonacci sequence.

Lemma 2.1. If 2 | p−1k and α
p−1
k ≡ 1 (mod p), then

ord α =
p− 1

k
or ord β =

p− 1

k
.

Proof. Let us denote d = ord α in F∗p. Because α
p−1
k ≡ 1 (mod p),

we have
p− 1

k
= ld

for some positive integer l. If l = 1, then we have proved the theorem.
Let us suppose now that l ≥ 2. From formula (2.1), it follows that

Fn+2d ≡ Fn (mod p)

for any positive integer n and that

an+2d ≡ an (mod p)
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for any positive n. Because the period of the sequence an is p−1
k , it

follows that 2d ≥ p−1
k = ld. Therefore,

l = 2 and d =
p− 1

2k
.

If d ≡ 0 (mod 2), then from formula (2.1) it follows that

Fn+d ≡ Fn (mod p)

for any positive integer n and that

an+d ≡ an (mod p)

for any positive n. Thus, the period of the sequence an would be smaller
than d = p−1

2k , which is a contradiction, because the period of the se-

quence an is p−1
k . Therefore, d is odd. Now, we show that ord β = p−1

k .
Let us denote d1 = ord β in F∗p. We have

(2.2) β
p−1
k =

(
− 1

α

) p−1
k

=
1

α
p−1
k

≡ 1 (mod p)

and so d1 divides p−1
k . We have

1 ≡ β2d1 =

(
− 1

α

)2d1

=
1

α2d1
(mod p)

and so α2d1 ≡ 1 (mod p) and d divides 2d1. Because d is odd, it follows

that d divides d1 and from (2.2), it follows that d1 divides p−1
k . We

deduce that d1 = p−1
2k or d1 = p−1

k . If d1 = p−1
2k , then

1 ≡ βd1 =

(
− 1

α

)d1

= − 1

αd1
≡ −1 (mod p),

which is a contradiction. Therefore, we obtain

d1 =
p− 1

k
= ord β

and we have the desired result.

Now, we show the second statement of the theorem when k ≡ 1
(mod 2).

Proof. By Lemma 2.1, it is sufficient to show that α
p−1
k ≡ 1 (mod p).

Let us denote c = p−1
k . From formula (2.1), it follows that

(2.3) Ftc ≡
1√
5

(
αtc − 1

αtc

)
≡ 1√

5

(
αtc − α(k−t)c

)
(mod p)
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and
(2.4)

Ftc+1 ≡
1√
5

(
αtc+1 +

1

αtc+1

)
≡ 1√

5

(
αtc+1 + α(k−t)c−1

)
(mod p)

for any integer t such that 1 ≤ t ≤ k − 1.

Because the sequence (an)n≥1 modulo p has period c, we have

(2.5) x = a2 ≡ at′c+2 = Ft′c + xFt′c+1 (mod p).

for any positive integer t′.

From formulas (2.3), (2.4) and (2.5), it follows that

(k − 1)x ≡
k−1∑
t=1

(Ftc + xFtc+1)

=

k−1
2∑

t=1

(
Ftc + F(k−t)c + xFtc+1 + xF(k−t)c+1

)

≡

k−1
2∑

t=1

x√
5

(
αtc−1 + αtc+1 + α(k−t)c−1 + α(k−t)c+1

)

=

k−1
2∑

t=1

x
(
αtc + α(k−t)c

)
=

k−1∑
t=1

αtcx (mod p).(2.6)

Let us suppose that αc 6≡ 1 (mod p). Because αp−1−1 ≡ 0 (mod p),
we have

(αc − 1)
(
α(k−1)c + α(k−2)c + · · ·+ α+ 1

)
≡ 0 (mod p)

and it follows that
∑k−1

t=0 α
tc ≡ 0 (mod p). Substituting in equation

(2.6), we obtain

(k − 1)x ≡ −x (mod p).

Because 0 < k < p and x 6≡ 0 (mod p), this leads to a contradiction.
Therefore, we proved that αc ≡ 1 (mod p) and we finished the proof of
the theorem when k ≡ 1 (mod 2).
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3. The case k ≡ 0 (mod 2).

Let us suppose k = 2tq, where t is a positive integer and q is an odd
number. Before proving the theorem, we prove the following lemma.

Lemma 3.1. If 2t | p− 1, then

α
p−1

2t−1 ≡ 1 (mod p).

Proof. We first show that if 2t
′ | p− 1 and α

p−1

2t
′−2 ≡ 1 (mod p), then

α
p−1

2t
′−1 ≡ 1 (mod p). Suppose α

p−1

2t
′−1 ≡ −1 (mod p). Then we have

F p−1

2t
′−1
≡ 1√

5

(
α

p−1

2t
′−1 − 1

α
p−1

2t
′−1

)
≡ 0 (mod p).

This means

F p−1

2t
′−1

+1 ≡
1√
5

(
α

p−1

2t
′−1

+1
+

1

α
p−1

2t
′−1

+1

)
≡ − 1√

5

(
α+

1

α

)
≡ −1 (mod p).

Hence,

x = a2 ≡ a p−1

2t
′−1

+2 ≡ F p−1

2t
′−1

+ xF p−1

2t
′−1

+1 ≡ −x (mod p).

It follows that x ≡ 0 (mod p), which is a contradiction. Therefore, we

have α
p−1

2t
′−1 ≡ 1 (mod p) when 2t

′ | p − 1 and α
p−1

2t
′−2 ≡ 1 (mod p).

Because αp−1 ≡ 1 (mod p), we get α
p−1

2t−1 ≡ 1 (mod p) when 2t | p− 1.

We can show that α
p−1
q ≡ 1 (mod p) in a simliar way as when k ≡ 1

(mod 2). Now, we show the second statement of the theorem when k is
an even.

Proof. (1) The case p ≡ 1 (mod 2t+1).

By Lemma 3.1, we have α
p−1

2t ≡ 1 (mod p), and we obtain α
p−1
k ≡ 1

(mod p). The proof of the second statement is finished by Lemma 2.1

because p−1
k is an even number.

(2) The case p ≡ 2t + 1 (mod 2t+1).

By Lemma 3.1, we have α
p−1

2t−1 ≡ 1 (mod p), and we obtain α
p−1

2t ≡
±1 (mod p). If α

p−1

2t ≡ 1 (mod p), then

F p−1

2t
≡ 1√

5

(
α

p−1

2t +
1

α
p−1

2t

)
≡ 1√

5

(
1 + 1

α
p−1

2t

)
≡ 2√

5
(mod p)
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and

F p−1

2t
+1 ≡

1√
5

(
α

p−1

2t
+1 − 1

α
p−1

2t
+1

)
≡ 1√

5

(
α2 − 1

α
p−1

2t
+1

)
≡ 1√

5
(mod p).

This means

x = a2 ≡ a p−1

2t
+2 ≡ F p−1

2t
+ xF p−1+2t

2t

≡ 2√
5

+
1√
5
x (mod p).

Hence,

x ≡ 2√
5− 1

≡ 1 +
√

5

2
≡ α (mod p).

Therefore, a2 = x, a3 = 1 + x ≡ 1 + α ≡ α2 (mod p) and we deduce
that an ≡ αn (mod p) for any positive integer n by using mathematical
induction. From the condition of the hypothesis, it follows that ord α =
p−1
k .

If α
p−1

2t ≡ −1 (mod p), then

F p−1

2t
≡ 1√

5

(
α

p−1

2t +
1

α
p−1

2t

)
≡ 1√

5

(
1 + 1

α
p−1

2t

)
≡ − 2√

5
(mod p)

and

F p−1

2t
+1 ≡

1√
5

(
α

p−1

2t
+1 − 1

α
p−1

2t
+1

)
≡ 1√

5

(
α2 − 1

α
p−1

2t
+1

)
≡ − 1√

5
(mod p).

This means

x = a2 ≡ a p−1

2t
+2 ≡ F p−1

2t
+ xF p−1+2t

2t

≡ − 2√
5
− 1√

5
x (mod p).

Hence,

x ≡ − 2√
5 + 1

≡ 1−
√

5

2
≡ β (mod p).

Therefore, a2 = x, a3 = 1 + x ≡ 1 + β ≡ β2 (mod p) and we deduce
that an ≡ βn (mod p) for any positive integer n by using mathematical
induction. From the condition of the hypothesis, it follows that ord β =
p−1
k . Hence, we have the desired result.

Remark 3.2. For k = 3 and p = 139, there exists a sequence (an)n≥1
with initial terms a1 = 1, a2 = 76 which satisfies the definition of Fi-
bonacci sequence with modulo 139 and (an) is periodic modulo 139 with
period 139−1

3 = 46 and

{an | 1 ≤ n ≤ 46} =
{
b3 | b ∈ F∗p

}
,

where F∗p is reduced residue system by p.
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