FIBONACCI SEQUENCES IN k TH POWER RESIDUES

Youchan Chung, Eunyool Jang, Jinseo Park ${ }^{\dagger}$, and Sanghoon
Park

Abstract

In this paper, we find all the prime numbers p that satisfy the following statement. If a positive integer k is a divisor of $p-1$, then there is a sequence consisting of all k-th power residues modulo p, satisfying the recurrence equation of the Fibonacci sequence modulo p.

1. Introduction

Let us consider of the sequence ($1,4,5,9,3$). This sequence, consists of all of the quadratic residues modulo 11 , satisfies the definition of the Fibonacci sequence with modulo 11, that is

$$
\begin{aligned}
& 1+4 \equiv 5 \quad(\bmod 11), 4+5 \equiv 9 \quad(\bmod 11) \\
& 5+9 \equiv 3 \quad(\bmod 11), 9+3 \equiv 1 \quad(\bmod 11) .
\end{aligned}
$$

In addition, the sequence $(1,24,25,20,16,7,23)$ includes all of the 4th power residues modulo 29, and likewise this sequence satisfies the definition of Fibonacci sequence with respect to modulo 29. In [1], Alexandru Gica proved the following Theorem.

Theorem 1.1. If $p>2$ is a prime number, there exists a sequence $\left(a_{n}\right)_{n>0}$ such that $a_{n+2} \equiv a_{n+1}+a_{n}(\bmod p)$ for any positive integer n, a_{n} is periodic modulo p with period $\frac{p-1}{2}$ and

$$
\left\{\overline{a_{n}} \left\lvert\, 1 \leq n \leq \frac{p-1}{2}\right.\right\}=\left\{b^{2} \mid b \in \mathbb{F}_{p}^{*}\right\}
$$

if and only if

[^0]1. $p \equiv 1,4(\bmod 5)$ and
2. ord $\alpha=\frac{p-1}{2}$ or ord $\beta=\frac{p-1}{2}$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.

In the above theorem, \mathbb{F}_{p}^{*} is the multiplicative group of the field of the residues modulo p and $\overline{a_{n}}$ is the class of a_{n} modulo p. Then it is natural to ask the following problem.

Problem 1.1. Let $p>2$ be a prime number and k be a positive integer with $k \mid p-1$. What are the conditions of the prime number p which satisfies the following statement?
There exists a sequence $\left(a_{n}\right)_{n \geq 1}$ such that $a_{n+2} \equiv a_{n+1}+a_{n}(\bmod p)$ for any positive integer n, a_{n} is periodic modulo p with period $\frac{p-1}{k}$ and

$$
\left\{\overline{a_{n}} \mid n \in \mathbb{N}\right\}=\left\{b^{k} \mid b \in \mathbb{F}_{p}^{*}\right\}
$$

where \mathbb{F}_{p}^{*} is reduced residue system by p.
This problem is the conjecture of A. Gica in [1]. In this paper, we prove the following theorem which is the answer of the conjecture.

ThEOREM 1.2. Let n be the positive integer and $p>2$ be a prime number except 5. There exists a sequence $\left(a_{n}\right)_{n \geq 1}$ such that $a_{n+2} \equiv$ $a_{n+1}+a_{n}(\bmod p), a_{n}$ is periodic modulo p with period $\frac{p-1}{k}$ and

$$
\left\{\overline{a_{n}} \left\lvert\, 1 \leq n \leq \frac{p-1}{k}\right.\right\}=\left\{b^{k} \mid b \in \mathbb{F}_{p}^{*}\right\}
$$

if and only if the prime number p satisfies the following conditions.

1. $p \equiv \pm 1(\bmod 5)$
2. ord $\alpha=\frac{p-1}{k}$ or ord $\beta=\frac{p-1}{k}$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.

This theorem can be considered as a generalization of the Theorem 1.1. In Theorem 1.2, if $\left(\frac{5}{p}\right)=1$, then there exists a positive integer $m \leq \frac{p-1}{2}$ such that $m^{2} \equiv 5(\bmod \mathrm{p})$. We denote $m=\sqrt{5}$. If $p \equiv \pm 1$ $(\bmod 5)$ and ord $\alpha=\frac{p-1}{k}$ or ord $\beta=\frac{p-1}{k}$, then two roots of the equation

$$
x^{2}-x-1=0
$$

are $x=\frac{1 \pm \sqrt{5}}{2}$. Hence, $\alpha^{2} \equiv \alpha+1(\bmod p)$ and $\beta^{2} \equiv \beta+1(\bmod p)$. In the case of ord $\alpha=\frac{p-1}{k}$, if we define $a_{n}=\alpha^{n}$, then the sequence a_{n} safisfies the congrunece equation

$$
a_{n+2} \equiv a_{n+1}+a_{n} \quad(\bmod p)
$$

At this point, let us prove the following lemma.

Lemma 1.3. If ord $\gamma \left\lvert\, \frac{p-1}{k}\right.$, then γ is k th power residue of modulo p.
Proof. Let g be the primitive root of modulo p. Then, we can denote

$$
\gamma \equiv g^{c} \quad(\bmod p) .
$$

Because $\gamma^{\frac{p-1}{k}} \equiv 1(\bmod p)$, we have

$$
g^{\frac{c(p-1)}{k}} \equiv 1 \quad(\bmod p)
$$

It follows that $k \mid c$, so γ is k th power residue of modulo p.
By Lemma 1.3, the sequence $\left(a_{n}\right)$ exists as $a_{n}=\alpha^{n}$. In the case of ord $\beta=\frac{p-1}{k}$, the sequence $\left(a_{n}\right)$ exists as $a_{n}=\beta^{n}$. Replacing the sequence $\left(a_{n}\right)_{n \geq 1}$ with the sequence $\left(b_{n}=\frac{a_{n}}{a_{1}}\right)_{n \geq 1}$ which has the same properties as the initial one, we can suppose that $a_{1}=1$ and $a_{2}=x \not \equiv 1$ $(\bmod p)$. On the other hand, the proof of the first statement, $p \equiv \pm 1$ $(\bmod 5)$, is similar to the proof in the previous papers(see $[1, \mathrm{p} .69]$ and [2, p.157]), because k is a divisor of $p-1$ and the period of the sequence $\left(a_{n}\right)$ is a divisor of $p-1$.

2. The case $k \equiv 1(\bmod 2)$.

Because the first statement of the theorem has been proved, we prove the second statement of the theorem when $k \equiv 1(\bmod 2)$. Because $a_{1}=1$ and $a_{2}=x \not \equiv 1(\bmod p)$, we have

$$
\begin{equation*}
a_{n+2} \equiv F_{n}+x F_{n+1} \quad(\bmod p) \tag{2.1}
\end{equation*}
$$

for all positive integers n, where $\left(F_{n}\right)$ is the Fibonacci sequence.
Lemma 2.1. If $2 \left\lvert\, \frac{p-1}{k}\right.$ and $\alpha^{\frac{p-1}{k}} \equiv 1(\bmod p)$, then

$$
\text { ord } \alpha=\frac{p-1}{k} \text { or ord } \beta=\frac{p-1}{k} \text {. }
$$

Proof. Let us denote $d=o r d \alpha$ in \mathbb{F}_{p}^{*}. Because $\alpha^{\frac{p-1}{k}} \equiv 1(\bmod p)$, we have

$$
\frac{p-1}{k}=l d
$$

for some positive integer l. If $l=1$, then we have proved the theorem. Let us suppose now that $l \geq 2$. From formula (2.1), it follows that

$$
F_{n+2 d} \equiv F_{n} \quad(\bmod p)
$$

for any positive integer n and that

$$
a_{n+2 d} \equiv a_{n} \quad(\bmod p)
$$

for any positive n. Because the period of the sequence a_{n} is $\frac{p-1}{k}$, it follows that $2 d \geq \frac{p-1}{k}=l d$. Therefore,

$$
l=2 \quad \text { and } \quad d=\frac{p-1}{2 k} .
$$

If $d \equiv 0(\bmod 2)$, then from formula (2.1) it follows that

$$
F_{n+d} \equiv F_{n} \quad(\bmod p)
$$

for any positive integer n and that

$$
a_{n+d} \equiv a_{n} \quad(\bmod p)
$$

for any positive n. Thus, the period of the sequence a_{n} would be smaller than $d=\frac{p-1}{2 k}$, which is a contradiction, because the period of the sequence a_{n} is $\frac{p-1}{k}$. Therefore, d is odd. Now, we show that ord $\beta=\frac{p-1}{k}$. Let us denote $d_{1}=\operatorname{ord} \beta$ in \mathbb{F}_{p}^{*}. We have

$$
\begin{equation*}
\beta^{\frac{p-1}{k}}=\left(-\frac{1}{\alpha}\right)^{\frac{p-1}{k}}=\frac{1}{\alpha^{\frac{p-1}{k}}} \equiv 1 \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

and so d_{1} divides $\frac{p-1}{k}$. We have

$$
1 \equiv \beta^{2 d_{1}}=\left(-\frac{1}{\alpha}\right)^{2 d_{1}}=\frac{1}{\alpha^{2 d_{1}}} \quad(\bmod p)
$$

and so $\alpha^{2 d_{1}} \equiv 1(\bmod p)$ and d divides $2 d_{1}$. Because d is odd, it follows that d divides d_{1} and from (2.2), it follows that d_{1} divides $\frac{p-1}{k}$. We deduce that $d_{1}=\frac{p-1}{2 k}$ or $d_{1}=\frac{p-1}{k}$. If $d_{1}=\frac{p-1}{2 k}$, then

$$
1 \equiv \beta^{d_{1}}=\left(-\frac{1}{\alpha}\right)^{d_{1}}=-\frac{1}{\alpha^{d_{1}}} \equiv-1 \quad(\bmod p),
$$

which is a contradiction. Therefore, we obtain

$$
d_{1}=\frac{p-1}{k}=\text { ord } \beta
$$

and we have the desired result.
Now, we show the second statement of the theorem when $k \equiv 1$ $(\bmod 2)$.

Proof. By Lemma 2.1, it is sufficient to show that $\alpha^{\frac{p-1}{k}} \equiv 1(\bmod p)$. Let us denote $c=\frac{p-1}{k}$. From formula (2.1), it follows that

$$
\begin{equation*}
F_{t c} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{t c}-\frac{1}{\alpha^{t c}}\right) \equiv \frac{1}{\sqrt{5}}\left(\alpha^{t c}-\alpha^{(k-t) c}\right) \quad(\bmod p) \tag{2.3}
\end{equation*}
$$

and
(2.4)

$$
F_{t c+1} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{t c+1}+\frac{1}{\alpha^{t c+1}}\right) \equiv \frac{1}{\sqrt{5}}\left(\alpha^{t c+1}+\alpha^{(k-t) c-1}\right) \quad(\bmod p)
$$

for any integer t such that $1 \leq t \leq k-1$.
Because the sequence $\left(a_{n}\right)_{n \geq 1}$ modulo p has period c, we have

$$
\begin{equation*}
x=a_{2} \equiv a_{t^{\prime} c+2}=F_{t^{\prime} c}+x F_{t^{\prime} c+1} \quad(\bmod p) \tag{2.5}
\end{equation*}
$$

for any positive integer t^{\prime}.
From formulas (2.3), (2.4) and (2.5), it follows that

$$
\begin{aligned}
(k-1) x & \equiv \sum_{t=1}^{k-1}\left(F_{t c}+x F_{t c+1}\right) \\
& =\sum_{t=1}^{\frac{k-1}{2}}\left(F_{t c}+F_{(k-t) c}+x F_{t c+1}+x F_{(k-t) c+1}\right) \\
& \equiv \sum_{t=1}^{\frac{k-1}{2}} \frac{x}{\sqrt{5}}\left(\alpha^{t c-1}+\alpha^{t c+1}+\alpha^{(k-t) c-1}+\alpha^{(k-t) c+1}\right) \\
& =\sum_{t=1}^{\frac{k-1}{2}} x\left(\alpha^{t c}+\alpha^{(k-t) c}\right) \\
& =\sum_{t=1}^{k-1} \alpha^{t c} x \quad(\bmod p)
\end{aligned}
$$

Let us suppose that $\alpha^{c} \not \equiv 1(\bmod p)$. Because $\alpha^{p-1}-1 \equiv 0(\bmod p)$, we have

$$
\left(\alpha^{c}-1\right)\left(\alpha^{(k-1) c}+\alpha^{(k-2) c}+\cdots+\alpha+1\right) \equiv 0 \quad(\bmod p)
$$

and it follows that $\sum_{t=0}^{k-1} \alpha^{t c} \equiv 0(\bmod p)$. Substituting in equation (2.6), we obtain

$$
(k-1) x \equiv-x \quad(\bmod p)
$$

Because $0<k<p$ and $x \not \equiv 0(\bmod p)$, this leads to a contradiction. Therefore, we proved that $\alpha^{c} \equiv 1(\bmod p)$ and we finished the proof of the theorem when $k \equiv 1(\bmod 2)$.
3. The case $k \equiv 0(\bmod 2)$.

Let us suppose $k=2^{t} q$, where t is a positive integer and q is an odd number. Before proving the theorem, we prove the following lemma.

Lemma 3.1. If $2^{t} \mid p-1$, then

$$
\alpha^{\frac{p-1}{2^{t-1}}} \equiv 1 \quad(\bmod p) .
$$

Proof. We first show that if $2^{t^{\prime}} \mid p-1$ and $\alpha^{\frac{p-1}{2^{t^{\prime}-2}}} \equiv 1(\bmod p)$, then $\alpha^{\frac{p-1}{2^{t-1}}} \equiv 1(\bmod p)$. Suppose $\alpha^{\frac{p-1}{2^{t^{\prime}-1}}} \equiv-1(\bmod p)$. Then we have

$$
F_{\frac{p-1}{2^{t^{t}-1}}} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2^{t}-1}}-\frac{1}{\alpha^{\frac{p-1}{2^{t^{t}-1}}}}\right) \equiv 0 \quad(\bmod p) .
$$

This means
$F_{\frac{p-1}{2^{t}-1}+1} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2^{t^{\prime}-1}+1}}+\frac{1}{\alpha^{\frac{p-1}{t^{t}-1}+1}}\right) \equiv-\frac{1}{\sqrt{5}}\left(\alpha+\frac{1}{\alpha}\right) \equiv-1 \quad(\bmod p)$.
Hence,

$$
x=a_{2} \equiv a_{\frac{p-1}{2^{t^{\prime}-1}+2}} \equiv F_{\frac{p-1}{2^{\prime}-1}}+x F_{\frac{p-1}{2 t^{\prime}-1}+1} \equiv-x \quad(\bmod p) .
$$

It follows that $x \equiv 0(\bmod p)$, which is a contradiction. Therefore, we have $\alpha^{\frac{p-1}{2^{t^{\prime}-1}}} \equiv 1(\bmod p)$ when $2^{t^{\prime}} \mid p-1$ and $\alpha^{\frac{p-1}{2^{t^{\prime}-2}}} \equiv 1(\bmod p)$. Because $\alpha^{p-1} \equiv 1(\bmod p)$, we get $\alpha^{\frac{p-1}{2 t-1}} \equiv 1(\bmod p)$ when $2^{t} \mid p-1$.

We can show that $\alpha^{\frac{p-1}{q}} \equiv 1(\bmod p)$ in a simliar way as when $k \equiv 1$ $(\bmod 2)$. Now, we show the second statement of the theorem when k is an even.

Proof. (1) The case $p \equiv 1\left(\bmod 2^{t+1}\right)$.
By Lemma 3.1, we have $\alpha^{\frac{p-1}{2^{t}}} \equiv 1(\bmod p)$, and we obtain $\alpha^{\frac{p-1}{k}} \equiv 1$ $(\bmod p)$. The proof of the second statement is finished by Lemma 2.1 because $\frac{p-1}{k}$ is an even number.
(2) The case $p \equiv 2^{t}+1\left(\bmod 2^{t+1}\right)$.

By Lemma 3.1, we have $\alpha^{\frac{p-1}{2^{t-1}}} \equiv 1(\bmod p)$, and we obtain $\alpha^{\frac{p-1}{2^{t}}} \equiv$ $\pm 1(\bmod p)$. If $\alpha^{\frac{p-1}{2^{t}}} \equiv 1(\bmod p)$, then

$$
F_{\frac{p-1}{2 t}}^{2^{t}} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2^{t}}}+\frac{1}{\alpha^{\frac{p-1}{2^{t}}}}\right) \equiv \frac{1}{\sqrt{5}}\left(\frac{1+1}{\alpha^{\frac{p-1}{2^{t}}}}\right) \equiv \frac{2}{\sqrt{5}} \quad(\bmod p)
$$

and

$$
F_{\frac{p-1}{2^{t}}+1} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2^{t}}+1}-\frac{1}{\alpha^{\frac{p-1}{2^{t}}+1}}\right) \equiv \frac{1}{\sqrt{5}}\left(\frac{\alpha^{2}-1}{\alpha^{\frac{p-1}{2^{t}}+1}}\right) \equiv \frac{1}{\sqrt{5}} \quad(\bmod p)
$$

This means

$$
x=a_{2} \equiv a_{\frac{p-1}{2^{t}}+2} \equiv F_{\frac{p-1}{2^{t}}}+x F_{\frac{p-1+2^{t}}{2^{t}}} \equiv \frac{2}{\sqrt{5}}+\frac{1}{\sqrt{5}} x \quad(\bmod p) .
$$

Hence,

$$
x \equiv \frac{2}{\sqrt{5}-1} \equiv \frac{1+\sqrt{5}}{2} \equiv \alpha \quad(\bmod p)
$$

Therefore, $a_{2}=x, a_{3}=1+x \equiv 1+\alpha \equiv \alpha^{2}(\bmod p)$ and we deduce that $a_{n} \equiv \alpha^{n}(\bmod p)$ for any positive integer n by using mathematical induction. From the condition of the hypothesis, it follows that ord $\alpha=$ $\frac{p-1}{k}$.

If $\alpha^{\frac{p-1}{2^{t}}} \equiv-1(\bmod p)$, then

$$
F_{\frac{p-1}{2^{t}}} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2^{t}}}+\frac{1}{\alpha^{\frac{p-1}{2^{t}}}}\right) \equiv \frac{1}{\sqrt{5}}\left(\frac{1+1}{\alpha^{\frac{p-1}{2^{t}}}}\right) \equiv-\frac{2}{\sqrt{5}} \quad(\bmod p)
$$

and
$F_{\frac{p-1}{2^{t}}+1} \equiv \frac{1}{\sqrt{5}}\left(\alpha^{\frac{p-1}{2^{t}}+1}-\frac{1}{\alpha^{\frac{p-1}{2^{t}}+1}}\right) \equiv \frac{1}{\sqrt{5}}\left(\frac{\alpha^{2}-1}{\alpha^{\frac{p-1}{2^{t}}+1}}\right) \equiv-\frac{1}{\sqrt{5}} \quad(\bmod p)$.
This means

$$
x=a_{2} \equiv a_{\frac{p-1}{2^{t}+2}} \equiv F_{\frac{p-1}{2^{t}}}+x F_{\frac{p-1+2^{t}}{2^{t}}} \equiv-\frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}} x \quad(\bmod p)
$$

Hence,

$$
x \equiv-\frac{2}{\sqrt{5}+1} \equiv \frac{1-\sqrt{5}}{2} \equiv \beta \quad(\bmod p)
$$

Therefore, $a_{2}=x, a_{3}=1+x \equiv 1+\beta \equiv \beta^{2}(\bmod p)$ and we deduce that $a_{n} \equiv \beta^{n}(\bmod p)$ for any positive integer n by using mathematical induction. From the condition of the hypothesis, it follows that ord $\beta=$ $\frac{p-1}{k}$. Hence, we have the desired result.

REMARK 3.2. For $k=3$ and $p=139$, there exists a sequence $\left(a_{n}\right)_{n \geq 1}$ with initial terms $a_{1}=1, a_{2}=76$ which satisfies the definition of Fibonacci sequence with modulo 139 and $\left(a_{n}\right)$ is periodic modulo 139 with period $\frac{139-1}{3}=46$ and

$$
\left\{\overline{a_{n}} \mid 1 \leq n \leq 46\right\}=\left\{b^{3} \mid b \in \mathbb{F}_{p}^{*}\right\}
$$

where \mathbb{F}_{p}^{*} is reduced residue system by p.

References

[1] A. Gica, Quaderatic Residues In Fibonacci Sequences, Fibonacci Quart., 46/47 (2008/2009), 68-72.
[2] A. Gica and L. Panaitopol, O Introducere n Aritmetic i Teoria Numerelor, Bucharest University Press, Bucharest, 2001.

MSC2020: 11A15, 11B39
Youchan Chung
Institude of Science Education for the Gifted and Talented
Yonsei University
Sinchon-Dong, Seodaemun-Gu, Seoul, 03722, Korea
E-mail: ddoksooni0817@gmail.com
Eunyool Jang
Institude of Science Education for the Gifted and Talented
Yonsei University
Sinchon-Dong, Seodaemun-Gu, Seoul, 03722, Korea
E-mail: sanyp77@naver.com
Jinseo Park
Department of Mathematics Education
Catholic Kwandong University
Gangneung 25601, Republic of Korea
E-mail: jspark@cku.ac.kr
Sanghoon Park
Institude of Science Education for the Gifted and Talented
Yonsei University
Sinchon-Dong, Seodaemun-Gu, Seoul, 03722, Korea
E-mail: parksh4108@naver.com

[^0]: Received October 27, 2021; Accepted November 30, 2021.
 2010 Mathematics Subject Classification: Primary 11B39, 11D09, 11D45; Secondary 11B37, 11J68, 11J86.

 Key words and phrases: Diophantine m-tuple, Fibonacci numbers, Pell equation.
 ${ }^{\dagger}$ Corresponding author.
 This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1G1A1006396).

