RIEMANNIAN AND LORENTZIAN VOLUME COMPARISONS WITH THE BAKRY-EMERY RICCI TENSOR

Jong Ryul Kim

Abstract

The Bishop and Bishop-Gromov volume comparisons with the Bakry-Emery Ricci tensor in a metric measure space are studied by the comparisons of the Jacobi differential equations in a Riemannian and Lorentzian manifold.

1. Introduction

Let M be an $(n+1)$-dimensional complete and simply connected Riemannian manifold with metric g. Given a real valued smooth function f on M and Riemannian volume density $d \mathrm{vol}_{g}$, a triple ($M, g, e^{-f} d \mathrm{vol}_{g}$) is called a metric measure space or a weighted manifold. The Bakry-Emery Ricci tensor Ric_{f} is defined by

$$
\begin{equation*}
\operatorname{Ric}_{f}=\operatorname{Ric}+\operatorname{Hess} f \tag{1.1}
\end{equation*}
$$

which becomes the Ricci tensor if f is constant. In connection with the m-Bakry-Emery Ricci tensor defined by

$$
\operatorname{Ric}_{f}^{m}=\operatorname{Ric}+\operatorname{Hess} f-\frac{1}{m} d f \otimes d f, \quad \text { for } \quad 0<m \leq \infty
$$

the Bakry-Emery Ricci tensor $\operatorname{Ric}_{f}=\operatorname{Ric}_{f}^{\infty}$ is also called the ∞-BakryEmery Ricci tensor. When $\operatorname{Ric}_{f}=\lambda g$ for some constant λ, we have a gradient Ricci soliton which is an important topic in Ricci flow. The diffusion operator on a complete metric measure space via Bakry-Emery Ricci tensor has geometrical applications ([1] [12]). The Bishop and Bishop-Gromov volume comparisons with the Bakry-Emery Ricci tensor have been studied in [10], [11]. Let $\bar{M}(k)$ be an $(n+1)$-dimensional Riemannian manifold of constant curvature k. Given a smooth function

[^0]$h(x)=-a \cdot d(x, \bar{p})$ for $\bar{p} \in \bar{M}$, a positive real number a and the Riemannian distance function d with respect to the metric \bar{g} on $\bar{M}(k)$, a quadruple $\left(\bar{M}(k), \bar{g}, e^{-h} d \operatorname{vol}_{\bar{g}}, \bar{p}\right)$ is called the pointed metric measure space. Wei and Wylie proved mean curvature comparison under the Bakry-Emery Ricci inequality $\operatorname{Ric}_{f} \geq n k$ together with $f^{\prime}>-a$ [11]. Using mean curvature comparison, they showed the Bishop-Gromov volume comparison in terms of the weighted volume. And Ruan presented the Bishop volume comparison theorem by using the m-Bakry-Emery Ricci tensor and weighted Laplacian theorem in [10].

In this paper, we use the f-Jacobi equation (2.9) and (∞, f)-Raychaud huri equation for a Jacobi tensor along a geodesic introduced for the study of Lorentzian singularity theorems in [2]. Our motivation is that the volume comparisons with the Bakry-Emery Ricci tensor can also be proved by the comparisons of the f-Jacobi differential equations using Lemma 5 obtained by Eschenburg and O'Sullivan in [5]. We show the Bishop and Bishop-Gromov volume comparisons between level hypersurfaces of geodesic balls with the Bakry-Emery Ricci tensor. A Lorentzian volume by the language of K-distance wedge defined in $[3]$ is used to define the Lorentzian weighted volume. The Lorentzian Bishop and Bishop-Gromov volume comparisons with the Bakry-Emery Ricci tensor are similarly stated by using the same methods in Riemannian geometry. From the viewpoint of physics, the Lorentzian f-volume expansion rate between spacelike hypersurfaces under the m-Bakry-Emery Ricci tensor condition was considered in [8]. Our Lorentzian f-volume comparison could also be applied to the relative f-volume comparisons (cf. [7] [8] [9] [13]).

2. Preliminaries

Let H be a hypersurface in an $(n+1)$-dimensional Riemannian manifold M and γ be a unit-speed geodesic orthogonal to H at $\gamma(r)$. For a unit normal vector field N along H with $N_{\gamma(r)}=\gamma^{\prime}(r)$ and $q \in H$, a mapping $\phi: I \times H \rightarrow M$ given by

$$
\phi(t, q)=\exp (t-r) N_{q},
$$

where $t \in I=\left[r, r_{1}\right)$, is called a normal geodesic variation of γ along the hypersurface H [5]. For each fixed $q \in H$, let γ_{q} be the geodesic given by $\gamma_{q}(t)=\phi(t, q)$ and define $\phi_{t}: H \rightarrow M$ by $\phi_{t}(q)=\phi(t, q)$ for $q \in H$. We denote by S_{-N} the shape operator of the hypersurface H. An H-Jacobi tensor along γ is defined by

Definition 2.1. Let γ be a unit-speed geodesic orthogonal to a hypersurface H at $\gamma(r)$ with $N_{\gamma(r)}=\gamma^{\prime}(r)$. A smooth $(1,1)$ tensor field $A:\left(\gamma^{\prime}\right)^{\perp} \rightarrow\left(\gamma^{\prime}\right)^{\perp}$ associated with ϕ is called an H-Jacobi tensor along γ if it satisfies
$A^{\prime \prime}+R\left(A, \gamma^{\prime}\right) \gamma^{\prime}=0, \quad \operatorname{ker} A \cap \operatorname{ker} A^{\prime}=\{0\}, \quad A(r)=\mathrm{Id}, \quad A^{\prime}(r)=S_{-N}$, where Id is the identity endomorphism of $\left(\gamma^{\prime}\right)^{\perp}$. A point $\gamma\left(t_{0}\right)$ for $t_{0} \in$ $\left(r, r_{1}\right)$ is called a focal point to H if $\operatorname{det} A\left(t_{0}\right)=0$.

The shape operator $S_{-\gamma^{\prime}(t)}$ of each level hypersurface H_{t} of H associated with ϕ is given by as in [5]

$$
A^{\prime} A^{-1}(t)=S_{-\gamma^{\prime}(t)}=S_{t}
$$

We denote by $\theta(t)=\operatorname{tr} S_{t}$ the mean curvature of H_{t} along $\gamma(t)$.
Put $B=A^{\prime} A^{-1}$ for an H-Jacobi tensor A along γ, then we have

$$
\begin{equation*}
B^{\prime}=A^{\prime \prime} A^{-1}-A^{\prime} A^{-1} A^{\prime} A^{-1}=-R_{\gamma^{\prime}}-B \circ B, \tag{2.1}
\end{equation*}
$$

where we put $R\left(A, \gamma^{\prime}\right) \gamma^{\prime}=R_{\gamma^{\prime}} A$. The mean curvature is also expressed as

$$
\theta=\operatorname{tr}(B)=\frac{(\operatorname{det}(A))^{\prime}}{\operatorname{det}(A)}
$$

and the shear tensor σ of A along γ is defined by

$$
\sigma=B-\frac{\theta}{n} \text { Id. }
$$

Note that a variation tensor field A associated with ϕ is a Lagrange tensor (Proposition 1 in [5]). So the vorticity $\frac{1}{2}\left(B-B^{*}\right)$ is zero, where * denotes the adjoint. Taking the trace of (2.1), we get the Raychaudhuri equation

$$
\begin{equation*}
\theta^{\prime}+\frac{\theta^{2}}{n}+\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma^{2}=0 \tag{2.2}
\end{equation*}
$$

where $\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)=\sum_{i=1}^{n} g\left(R\left(e_{i}, \gamma^{\prime}\right) \gamma^{\prime}, e_{i}\right)$ for an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{n}$ of $\gamma^{\prime \perp}$.
Put $x=(\operatorname{det} A)^{\frac{1}{n}}$, then we have

$$
\begin{equation*}
x^{\prime}=\frac{1}{n} x \theta, \quad x^{\prime \prime}=\frac{1}{n}\left(\theta^{\prime}+\frac{\theta^{2}}{n}\right) x . \tag{2.3}
\end{equation*}
$$

So we obtain the Jacobi equation by (2.2) and (2.3)

$$
x^{\prime \prime}+\frac{1}{n}\left(\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma^{2}\right) x=0
$$

Definition 2.2. [2] Let A be an H-Jacobi tensor along a geodesic γ. For a smooth function $f: M \rightarrow \mathbb{R}$, define $B_{f}=A^{\prime} A^{-1}-\frac{1}{n}(f \circ \gamma)^{\prime} \mathrm{Id}$. The f-expansion θ_{f}, f-shear tensor σ_{f} of A along γ is defined by

$$
\theta_{f}=\operatorname{tr}\left(B_{f}\right), \quad \sigma_{f}=B_{f}-\frac{\theta_{f}}{n} \mathrm{Id}
$$

respectively.

For a measure $e^{-f} d \mathrm{vol}_{g}$, the f-expansion θ_{f} of an H-Jacobi tensor along a geodesic γ can be also expressed as

$$
\begin{equation*}
\theta_{f}=\frac{\left(e^{-f} \operatorname{det} A\right)^{\prime}}{e^{-f} \operatorname{det} A}=\theta-f^{\prime} \tag{2.4}
\end{equation*}
$$

So we have

$$
\sigma_{f}=B_{f}-\frac{\theta_{f}}{n} \mathrm{Id}=A^{\prime} A^{-1}-\frac{f^{\prime}}{n} \mathrm{Id}-\frac{\theta-f^{\prime}}{n} \mathrm{Id}=B-\frac{\theta}{n} \mathrm{Id}=\sigma
$$

Note that

$$
\operatorname{Hess} f\left(\gamma^{\prime}, \gamma^{\prime}\right)=g\left(D_{\gamma^{\prime}} \nabla f, \gamma^{\prime}\right)=\gamma^{\prime} g\left(\nabla f, \gamma^{\prime}\right)=f^{\prime \prime}
$$

Differentiating (2.4), we have

$$
\begin{equation*}
\theta_{f}^{\prime}=\theta^{\prime}-\operatorname{Hess} f\left(\gamma^{\prime}, \gamma^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Using $\sigma_{f}=\sigma,(1.1)$ and (2.5), the Raychaudhuri equation (2.2) is changed to
$\theta_{f}^{\prime}=-\left(\frac{1}{n} \theta^{2}+\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma^{2}\right)-\operatorname{Hess} f\left(\gamma^{\prime}, \gamma^{\prime}\right)=-\frac{1}{n} \theta^{2}-\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right)-\operatorname{tr} \sigma_{f}^{2}$.
So we have

$$
\begin{equation*}
\theta_{f}^{\prime}+\frac{1}{n} \theta^{2}+\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma_{f}^{2}=0 \tag{2.6}
\end{equation*}
$$

Hence, by inserting (2.4) to the equation (2.6), we get the f-Raychaudhuri equation as in [2]

$$
\begin{equation*}
\theta_{f}^{\prime}+\frac{1}{n}\left(\theta_{f}^{2}+2 \theta_{f} f^{\prime}+\left(f^{\prime}\right)^{2}\right)+\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma_{f}^{2}=0 \tag{2.7}
\end{equation*}
$$

Now put $x_{f}=\left(e^{-f} \operatorname{det} A\right)^{\frac{1}{n}}$. Then we see

$$
\begin{equation*}
x_{f}^{\prime}=\frac{1}{n} x_{f} \theta_{f}, \quad x_{f}^{\prime \prime}=\frac{1}{n}\left(\theta_{f}^{\prime}+\frac{1}{n} \theta_{f}^{2}\right) x_{f} . \tag{2.8}
\end{equation*}
$$

So we obtain the f-Jacobi equation by (2.7) and (2.8)

$$
\begin{equation*}
x_{f}^{\prime \prime}+\frac{1}{n}\left(\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\frac{2 \theta_{f} f^{\prime}+\left(f^{\prime}\right)^{2}}{n}+\operatorname{tr} \sigma_{f}^{2}\right) x_{f}=0 \tag{2.9}
\end{equation*}
$$

3. Riemannian volume comparisons with the Bakry-Emery Ricci tensor

Let M be an $(n+1)$-dimensional Riemannian manifold and γ be a unit speed geodesic with $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$. Let $S\left(r_{0}\right)$ be a sphere of radius r_{0} in $T_{p} M$. Put $S_{p}\left(r_{0}\right)=\exp _{p} S\left(r_{0}\right)$. A Riemannian volume between $S_{p}\left(r_{0}\right)$ and $S_{p}(r)$ is defined by

$$
\begin{equation*}
V_{r_{0}}(r)=\int_{r_{0}}^{r} \int_{S(1)}|\operatorname{det} A| d v d t \tag{3.1}
\end{equation*}
$$

for $0<r_{0}<r<\operatorname{inj}_{S(1)}(p)$, where $d v$ is the volume element of $S(1)$ and $\operatorname{inj}_{S(1)}(p)=\inf \left\{\operatorname{cut}_{v}(p) \mid v \in S(1)\right\}$. The weighted volume between the geodesic ball $S_{p}\left(r_{0}\right)$ and $S_{p}(r)$ is defined by

$$
\begin{equation*}
V_{r_{0}}^{f}(r)=\int_{r_{0}}^{r} \int_{S(1)}\left|e^{-f} \operatorname{det} A\right| d v d t \tag{3.2}
\end{equation*}
$$

Let $\bar{M}(k)$ be an $(n+1)$-dimensional Riemannian manifold of constant curvature k as the model space of volume comparison and $\bar{\gamma}$ be a unit speed geodesic with $\bar{\gamma}(0)=\bar{p}$ and $\bar{\gamma}^{\prime}(0)=\bar{v}$. For a Jacobi tensor \bar{A} along $\bar{\gamma}$ with $\bar{A}(0)=0$ and $\bar{A}^{\prime}(0)=\mathrm{Id}$, the Jacobi equation along a geodesic $\bar{\gamma}$ is given by

$$
\bar{x}^{\prime \prime}+k \bar{x}=0
$$

In order to compare volumes, put $S_{\bar{p}}\left(r_{0}\right)=\exp _{\bar{p}} S\left(r_{0}\right)$ and assume a linear isometry

$$
\begin{equation*}
\imath: T_{\gamma\left(r_{0}\right)} S_{p}\left(r_{0}\right) \rightarrow T_{\bar{\gamma}\left(r_{0}\right)} S_{\bar{p}}\left(r_{0}\right) \tag{3.3}
\end{equation*}
$$

such that $\imath\left(\gamma^{\prime}\left(r_{0}\right)\right)=\bar{\gamma}^{\prime}\left(r_{0}\right)$ and $\imath\left(E_{i}\left(r_{0}\right)\right)=\bar{E}_{i}\left(r_{0}\right)$ for an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{\gamma\left(r_{0}\right)} S_{p}\left(r_{0}\right)$ and its parallel basis $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ along γ with $E_{i}\left(r_{0}\right)=e_{i}$ for each i, furthermore $S_{\bar{p}}\left(r_{0}\right)=\exp _{\bar{\gamma}\left(r_{0}\right)} \circ$ $\imath \circ \exp _{\gamma\left(r_{0}\right)}^{-1} S_{p}\left(r_{0}\right)$. The following Lemma is essential for our volume comparisons.

Lemma 3.1. [5] Suppose $u: \mathbb{R} \rightarrow \mathbb{R}$ is smooth. Let x, \bar{x} be a smooth function such that x, \bar{x} is a solution of the differential inequality $x^{\prime \prime}+$ $u x \leq 0, \bar{x}^{\prime \prime}+u \bar{x}=0$, respectively, with $\bar{x}\left(t_{0}\right)=x\left(t_{0}\right)$ and $x^{\prime}\left(t_{0}\right) \leq \bar{x}^{\prime}\left(t_{0}\right)$. Suppose that x and \bar{x} are both positive in some interval $\left[t_{0}, t\right)$. Let s,
\bar{s} be the first positive zero of x, \bar{x}, respectively. Then $s \leq \bar{s}, x \leq \bar{x}$ on $\left[t_{0}, \bar{s}\right]$ and $\frac{x^{\prime}}{x} \leq \frac{\bar{x}^{\prime}}{\bar{x}}$ on $\left[t_{0}, s\right]$.

Proof. Put $h=\frac{x}{\bar{x}}$ and $g=h^{\prime} \bar{x}^{2}=x^{\prime} \bar{x}-x \bar{x}^{\prime}$. If $\bar{x}\left(t_{0}\right)=x\left(t_{0}\right)$ and $x^{\prime}\left(t_{0}\right) \leq \bar{x}^{\prime}\left(t_{0}\right)$, then

$$
g\left(t_{0}\right)=x^{\prime}\left(t_{0}\right) \bar{x}\left(t_{0}\right)-x\left(t_{0}\right) \bar{x}^{\prime}\left(t_{0}\right)=\left(x^{\prime}\left(t_{0}\right)-\bar{x}^{\prime}\left(t_{0}\right)\right) \bar{x}\left(t_{0}\right) \leq 0
$$

and $g^{\prime}=x^{\prime \prime} \bar{x}-x \bar{x}^{\prime \prime}=\left(x^{\prime \prime}+u x\right) \bar{x} \leq 0$. So $g \leq 0$, hence $h^{\prime} \leq 0$. Since $h\left(t_{0}\right)=1$, we see $h \leq 1$. Therefore $x \leq \bar{x}$. It follows from

$$
\frac{x^{\prime}}{x}-\frac{\bar{x}^{\prime}}{\bar{x}}=\frac{x^{\prime} \bar{x}-x \bar{x}^{\prime}}{x \bar{x}},
$$

$g\left(t_{0}\right) \leq 0, g^{\prime} \leq 0$ that $\frac{x^{\prime}}{x} \leq \frac{\bar{x}^{\prime}}{\bar{x}}$.
We denote by $\bar{V}_{r_{0}}^{f}(r), \bar{V}_{r_{0}}(r)$ the f-volume, volume between level hypersurfaces in Riemannian manifold $\bar{M}(k)$ of constant curvature k respectively (3.2), (3.1). Under the above notations, we have

Proposition 3.2. Let $\bar{M}(k)$ be an $(n+1)$-dimensional Riemannian manifold of constant curvature $k \geq 0$. Assume that $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=$ $\operatorname{det} \bar{A}\left(r_{0}\right)$ and $\theta_{f}\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$ for a complete metric measure space $\left(M, g, e^{-f} d \mathrm{vol}_{g}\right)$. If $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k, \theta_{f}\left(r_{0}\right) \leq 0$ and $f^{\prime} \leq 0$, then we get

$$
V_{r_{0}}^{f}(r) \leq \bar{V}_{r_{0}}(r), \quad \frac{V_{r_{0}}^{f}(R)}{\bar{V}_{r_{0}}(R)} \leq \frac{V_{r_{0}}^{f}(r)}{\bar{V}_{r_{0}}(r)}
$$

for $0<r_{0}<r<R<\operatorname{inj}_{S(1)}(p)$. Equality holds if and only if each level hypersurface $S_{p}(t)=\exp _{p} S(t)$ is isometric to $S_{\bar{p}}(t)=\exp _{\bar{p}} S(t)$ for $r_{0} \leq t<r$ and $f=0$.

Proof. Assume that $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=\operatorname{det} \bar{A}\left(r_{0}\right)$ and $\theta_{f}\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$ with the linear isometry (3.3) $\imath: T_{\gamma\left(r_{0}\right)} S_{p}\left(r_{0}\right) \rightarrow T_{\bar{\gamma}\left(r_{0}\right)} S_{\bar{p}}\left(r_{0}\right)$ such that $S_{\bar{p}}\left(r_{0}\right)=\exp _{\bar{\gamma}\left(r_{0}\right)} \circ \imath \circ \exp _{\gamma\left(r_{0}\right)}^{-1} S_{p}\left(r_{0}\right)$. From (2.6) and $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k$, it follows that

$$
\theta_{f}^{\prime}=-\left(\frac{1}{n} \theta^{2}+\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right)+\operatorname{tr} \sigma_{f}^{2}\right) \leq-\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \leq-n k
$$

Integration gives

$$
\begin{gathered}
\int_{r_{0}}^{t} \theta_{f}^{\prime} d s \leq-\int_{r_{0}}^{t} n k d s \\
\theta_{f}(t) \leq-n k\left(t-r_{0}\right)+\theta_{f}\left(r_{0}\right)
\end{gathered}
$$

Thus we get $\theta_{f}(t) \leq 0$ under the assumption $\theta_{f}\left(r_{0}\right) \leq 0$. Furthermore we have $\theta_{f}(t) f^{\prime}(t) \geq 0$, since we assume $f^{\prime}(t) \leq 0$. From the f-Jacobi equation (2.9) along a geodesic γ, it follows that

$$
\frac{x_{f}^{\prime \prime}(t)}{x_{f}(t)} \leq-\frac{1}{n} \operatorname{Ric}_{f}\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)-\frac{2}{n^{2}} \theta_{f}(t) f^{\prime}(t) \leq-\frac{1}{n} \operatorname{Ric}_{f}\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right),
$$

since $\operatorname{tr} \sigma_{f}^{2} \geq 0$ and $\theta_{f}(t) f^{\prime}(t) \geq 0$. Thus we get

$$
\begin{equation*}
\bar{x}^{\prime \prime}+k \bar{x}=0, \quad \frac{x_{f}^{\prime \prime}}{x_{f}} \leq-\frac{1}{n} \operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \leq-k . \tag{3.4}
\end{equation*}
$$

The inequality (3.4) under $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=\operatorname{det} \bar{A}\left(r_{0}\right)$ and $\theta_{f}\left(r_{0}\right) \leq$ $\bar{\theta}\left(r_{0}\right)$ implies $x_{f} \leq \bar{x}$ by Lemma 3.1. So we obtain the volume inequality $V_{r_{0}}^{f}(r) \leq \bar{V}_{r_{0}}(r)$.

If the equality $V_{r_{0}}^{f}(r)=\bar{V}_{r_{0}}(r)$ holds, then we have $e^{-f} \operatorname{det} A=\operatorname{det} \bar{A}$. So $\bar{\theta}=\theta_{f}$. Recall that the Raychaudhuri equation in $\bar{M}(k)$ is

$$
\begin{equation*}
\bar{\theta}^{\prime}+\frac{1}{n} \bar{\theta}^{2}+n k=0 . \tag{3.5}
\end{equation*}
$$

Since $\bar{\theta}=\theta_{f}$, we get by subtracting (3.5) from (2.7)

$$
n k-\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right)=\frac{2 \theta_{f} f^{\prime}}{n}+\frac{\left(f^{\prime}\right)^{2}}{n}+\operatorname{tr} \sigma_{f}^{2} .
$$

By the assumption of $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k$, we get $\sigma_{f}=\sigma=0$ and $f^{\prime}=0$. Therefore we obtain $\bar{\theta}=\theta_{f}=\theta$. Then we have $\bar{B}=B$ and we get $R_{\gamma^{\prime}}=k$ Id from (2.1). The conclusion follows from Theorem 4 in [6].

By Lemma 3.1, we get $\theta_{f}(t) \leq \bar{\theta}(t)$ for $r_{0} \leq t<R$. The BishopGromov volume comparison theorem follows from [4] (cf. [3]) under the assumptions $\theta_{f}\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$ and $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=\operatorname{det} \bar{A}\left(r_{0}\right)$. If the equality of the Bishop-Gromov comparison holds, then we get $x_{f}=\bar{x}$ [4] (cf. [3]), that is $e^{-f} \operatorname{det} A=\operatorname{det} \bar{A}$. The above arguments lead to the conclusion.

Recall that given a smooth function $h(x)=-a \cdot d(x, \bar{p})$ for a positive real number a and $\bar{p} \in \bar{M}(k)$, where $\bar{M}(k)$ is an $(n+1)$-dimensional Riemannian manifold of constant curvature k and d is the Riemannian distance function in \bar{M}, a quadruple $\left(\bar{M}(k), \bar{g}, e^{-h} d \operatorname{vol}_{\bar{g}}, \bar{p}\right)$ is called
the pointed metric measure space. For the measure $e^{-h} d \operatorname{vol}_{\bar{g}}$, the h expansion is given by

$$
\theta_{h}(t)=\frac{\left(e^{-h(t)} \operatorname{det} \bar{A}(t)\right)^{\prime}}{e^{-h(t)} \operatorname{det} \bar{A}(t)}=\bar{\theta}(t)+a
$$

where $\bar{\theta}(t)$ is the mean curvature of each level hypersurface $S_{\bar{p}}(t)$ along a geodesic $\bar{\gamma}$ orthogonal to a hypersurface $S_{\bar{p}}\left(r_{0}\right)$.

Theorem 3.3. Let $\left(\bar{M}(k), \bar{g}, e^{-h} d \operatorname{vol}_{\bar{g}}, \bar{p}\right)$ be the pointed metric measure space for $k \geq 0$. For a complete metric measure space $\left(M, g, e^{-f} d \mathrm{vol}_{g}\right)$, assume that $\theta_{f}\left(r_{0}\right) \leq \theta_{h}\left(r_{0}\right)$ and $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=e^{-h\left(r_{0}\right)} \operatorname{det} \bar{A}\left(r_{0}\right)$. If $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k, \theta_{f}\left(r_{0}\right) \leq a$ and $f^{\prime} \leq-a$, then we get

$$
V_{r_{0}}^{f}(r) \leq V_{r_{0}}^{h}(r), \quad \frac{V_{r_{0}}^{f}(R)}{V_{r_{0}}^{h}(R)} \leq \frac{V_{r_{0}}^{f}(r)}{V_{r_{0}}^{h}(r)}
$$

for $0<r_{0}<r<R<\operatorname{inj}_{S(1)}(p)$. Equality holds if and only if each level hypersurface $S_{p}(t)$ is isometric to $S_{\bar{p}}(t)$ for $r_{0} \leq t<r$ and $f=h$.

Proof. Put $h_{\bar{p}}(x)=-a \cdot d(x, \bar{p}), h_{p}(x)=-a \cdot d(x, p)$ along a unit speed geodesic $\bar{\gamma}, \gamma$ in \bar{M}, M, respectively. Then we have

$$
h_{\bar{p}}(t)=-a \cdot d(\bar{p}, t)=-a t=-a \cdot d(p, t)=h_{p}(t)
$$

For a smooth function $\tilde{f}=f-h_{p}$ on M, we get $\operatorname{Ric}_{\tilde{f}}\left(\gamma^{\prime}, \gamma^{\prime}\right)=\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq$ $n k$, since $h_{p}^{\prime \prime}=0$. We apply Proposition 3.2 for a complete metric measure space $\left(M, g, e^{-\tilde{f}} d \mathrm{vol}_{g}\right)$ under the assumptions $\theta_{f-h_{p}}\left(r_{0}\right) \leq 0$ and $\left(f-h_{p}\right)^{\prime} \leq 0$ which are equivalent to $\theta_{f}\left(r_{0}\right) \leq a$ and $f^{\prime} \leq h_{p}^{\prime}=-a$. With these initial conditions, we have by Lemma 3.1

$$
\begin{equation*}
x_{f-h_{p}} \leq \bar{x}, \quad \theta_{f-h_{p}} \leq \bar{\theta} \tag{3.6}
\end{equation*}
$$

The inequality (3.6) leads to

$$
x_{f-h_{\bar{p}}}=\left(e^{-\left(f-h_{\bar{p}}\right)} \operatorname{det} A\right)^{\frac{1}{n}} \leq \bar{x}
$$

Hence we get

$$
\begin{equation*}
x_{f}=\left(e^{-f} \operatorname{det} A\right)^{\frac{1}{n}} \leq\left(e^{-h_{\bar{p}}}\right)^{\frac{1}{n}}(\operatorname{det} \bar{A})^{\frac{1}{n}}=\left(e^{-h_{\bar{p}}} \operatorname{det} \bar{A}\right)^{\frac{1}{n}}=x_{h} \tag{3.7}
\end{equation*}
$$

In the same way, we see that

$$
\theta_{f-h_{p}}=\theta_{f-h_{\bar{p}}}=\theta-\left(f^{\prime}+a\right) \leq \bar{\theta}
$$

implies

$$
\begin{equation*}
\theta_{f}=\theta-f^{\prime} \leq \bar{\theta}+a=\bar{\theta}-h_{\bar{p}}^{\prime}=\theta_{h} \tag{3.8}
\end{equation*}
$$

Therefore the volume inequality follows from (3.7) and (3.8). The volume equality holds if and only if each level hypersurface $S_{p}(t)$ is isometric to $S_{\bar{p}}(t)$ for $r_{0} \leq t<r$ and $f=h$ by the same arguments of Proposition 3.2 with $\tilde{f}=f-h_{p}$.

Recall that we denote by $V_{r_{0}}^{f}(r), V_{r_{0}}(r)$ the f-volume, volume between level hypersurfaces, respectively (3.2), (3.1). We Put $V^{f}(r)=V_{0}^{f}(r)$ and $V(r)=V_{r_{0}}(r)$.

Proposition 3.4. Let $\bar{M}(k)$ be an $(n+1)$-dimensional Riemannian manifold of constant curvature $k \geq 0$. For a complete metric measure $\operatorname{space}\left(M, g, e^{-f} d \mathrm{vol}_{g}\right)$, assume that $\theta_{f}\left(r_{0}\right) \leq \bar{\theta}\left(r_{0}\right)$ and $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=$ $\operatorname{det} \bar{A}\left(r_{0}\right)$. If $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k, \theta_{f}\left(r_{0}\right) \geq 0$ and $f^{\prime} \geq 0$, then we get

$$
V^{f}\left(r_{0}\right) \leq \bar{V}\left(r_{0}\right), \quad \frac{V^{f}(R)}{\bar{V}(R)} \leq \frac{V^{f}(r)}{\bar{V}(r)}
$$

where $r<R \leq r_{0}$. Equality holds if and only if each level hypersurface $S_{p}(t)$ is isometric to $S_{\bar{p}}(t)$ for $0<t<r_{0}$ with $f=0$.

Proof. Consider a Jacobi tensor A along a geodesic $\beta(t)=\gamma\left(r_{0}-t\right)$ such that $A^{\prime} A^{-1}=S_{-\beta^{\prime}(t)}$. Then $\theta_{f}(t)$ along $\beta(t)$ for $0 \leq t \leq r_{0}$ satisfies (3.4). Integration gives

$$
\begin{gathered}
\int_{t}^{r_{0}} \theta_{f}^{\prime} d s \leq-\int_{t}^{r_{0}} n k d s \\
\theta_{f}\left(r_{0}\right)-\theta_{f}(t) \leq-n k\left(r_{0}-t\right)
\end{gathered}
$$

Hence we get

$$
n k\left(r_{0}-t\right)+\theta_{f}\left(r_{0}\right) \leq \theta_{f}(t) .
$$

Therefore if $\theta_{f}\left(r_{0}\right) \geq 0$, then $\theta_{f}(t) \geq 0$. Under the assumption of $f^{\prime} \geq 0$, we get $\theta_{f}(t) f^{\prime}(t) \geq 0$. Hence the conclusions follow from Proposition 3.2 as t approaches zero.

Apply Theorem 3.3 for a smooth function $\tilde{f}=f-h_{p}$ on M and $\theta_{\tilde{f}}$ along the geodesic $\beta(t)=\gamma\left(r_{0}-t\right)$ for $0 \leq t \leq r_{0}$. Then we get by Proposition 3.4

Theorem 3.5. Let $\bar{M}(k)$ be an ($n+1$)-dimensional Riemannian manifold of constant curvature $k \geq 0$. For a complete metric measure space $\left(M, g, e^{-f} d \mathrm{vol}_{g}\right)$, assume that $\theta_{f}\left(r_{0}\right) \leq \theta_{h}\left(r_{0}\right)$ and $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=$
$e^{-h\left(r_{0}\right)} \operatorname{det} \bar{A}\left(r_{0}\right)$. If $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k, \theta_{f}\left(r_{0}\right) \geq a$ and $f^{\prime} \geq-a$, then we get

$$
V^{f}\left(r_{0}\right) \leq V^{h}\left(r_{0}\right), \quad \frac{V^{f}(R)}{V^{h}(R)} \leq \frac{V^{f}(r)}{V^{h}(r)}
$$

for $0<r<R<r_{0}<\operatorname{inj}_{S(1)}(p)$. Equality holds if and only if each level hypersurface $S_{p}(t)$ is isometric to $S_{\bar{p}}(t)$ for $0<t<r_{0}$ with $f=h$.

4. Lorentzian volume comparisons with the Bakry-Emery Ricci tensor

Riemannina volume comparisons with the Bakry-Emery Ricci tensor can be applied very similarly in a Lorentzian manifold by using the K distance wedge in [3]. We introduce it here for reader's convenience. Let M be an $(n+1)$-dimensional globally hyperbolic space-time and γ be a unit speed timelike geodesic with $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$. Take an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, \gamma^{\prime}(0)\right\}$ of $T_{p} M$ and let E_{i} be the parallel field along γ such that $E_{i}(0)=e_{i}$ for each i. Consider a geodesic variation

$$
\alpha(t, s)=\exp _{p}\left(t\left(v+s E_{i}\right)\right)
$$

along γ, then we have a Jacobi field $J_{i}(t)=\left.\alpha_{*}\right|_{(t, 0)}\left(\frac{d}{d s}\right)=\left(d \exp _{p}\right)_{t v} t e_{i}$ such that $J_{i}(0)=0$ and $J_{i}^{\prime}(0)=e_{i}$ for each i. Let A be a Jacobi tensor along γ with the initial conditions $A(0)=0$ and $A(0)^{\prime}=\mathrm{Id}$, then we obtain

$$
t^{n}\left|\operatorname{det} \alpha_{*}\right|_{(t, 0)}\left|=\left\|J_{1}(t) \wedge J_{2}(t) \wedge \cdots \wedge J_{n}(t)\right\|=|\operatorname{det} A| .\right.
$$

Let $\operatorname{Fut}\left(T_{p} M\right)$ be the set of all future directed timelike vectors $v \in T_{p} M$ such that $\exp _{p}(v)$ is defined and put $H\left(r_{0}\right)=\left\{v \in \operatorname{Fut}\left(T_{p} M\right) \mid g(v, v)=\right.$ $\left.-r_{0}^{2}\right\}$. Let \bar{K} be a compact subset of $H(1)$. Define the K-distance wedge $B_{p}^{K}(r)$ as

$$
B_{p}^{K}(r)=\left\{\exp _{p}(t v) \mid v \in \bar{K}, \quad 0 \leq t \leq r\right\}
$$

and put $V^{K}(r)=\operatorname{Vol}\left(B_{p}^{K}(r)\right)$. Let $d u, d v$ be the volume element of $\operatorname{Fut}\left(T_{p} M\right), \bar{K}$, respectively. The Lorentzian volume element is given by $d u=t^{n} d v d t$ (Lemma 4.2 [3]) and

$$
V(r)=V^{K}(r)=\int_{0}^{r} \int_{\bar{K}}|\operatorname{det} A| d v d t
$$

for $0<r<\operatorname{inj}_{\bar{K}}(p)$, where $\operatorname{inj}_{\bar{K}}(p)=\inf \left\{\operatorname{cut}_{v}(p) \mid v \in \bar{K}\right\}$. Using the comparison of the Jacobi differential equation (Lemma 3.1), the Lorentzian
version of the Bishop and Bishop-Gromov comparison theorems under $\operatorname{Ric}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k$ are obtained in [3].

Now we show the Lorentzian version of the Bishop and Bishop-Gromov comparisons between level hypersurfaces with the Bakry-Emery Ricci tensor. Let M be an $(n+1)$-dimensional globally hyperbolic space-time and γ be a unit speed timelike geodesic with $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$. Take a compact subset $H^{*}\left(r_{0}\right)$ of $H\left(r_{0}\right)$ and put $H_{r_{0}}^{*}=\exp _{p} H^{*}\left(r_{0}\right)$. The Lorentzian f-volume between level hypersurfaces $H_{r_{0}}^{*}$ and H_{r}^{*} is defined by

$$
V_{r_{0}}^{f}(r)=\int_{r_{0}}^{r} \int_{\bar{K}}\left|e^{-f} \operatorname{det} A\right| d v d t
$$

for $0<r_{0}<r<\operatorname{inj}_{\bar{K}}(p)$.
Let $\bar{M}(-k)$ be an $(n+1)$-dimensional space-time of constant curvature $-k(k>0)$ and $\bar{\gamma}$ be a unit speed timelike geodesic with $\bar{\gamma}(0)=\bar{p}$ and $\bar{\gamma}^{\prime}(0)=\bar{v}$. For a Jacobi tensor \bar{A} along $\bar{\gamma}$ with $\bar{A}(0)=0$ and $\bar{A}^{\prime}(0)=\mathrm{Id}$, the Jacobi equation along a geodesic $\bar{\gamma}$ is given by

$$
\bar{x}^{\prime \prime}+k \bar{x}=0
$$

as in [6]. For the Lorentzian distance function d, consider the pointed metric measure space $\left(\bar{M}(k), \bar{g}, e^{-h} d \operatorname{vol}_{\bar{g}}, \bar{p}\right)$, where $h: \exp _{\bar{p}}\left(\operatorname{Fut}\left(T_{\bar{p}} M\right)\right) \rightarrow$ $[0, \infty)$ and $h(x)=-a \cdot d(x, \bar{p})$. Put $\bar{H}_{r_{0}}^{*}=\exp _{\bar{p}} H^{*}\left(r_{0}\right)$ for a compact subset $H^{*}\left(r_{0}\right)$ of $H\left(r_{0}\right) \subset T_{\bar{p}} \bar{M}$. We assume a linear isometry $\imath: T_{\gamma\left(r_{0}\right)} H_{r_{0}}^{*} \rightarrow T_{\bar{\gamma}\left(r_{0}\right)} \bar{H}_{r_{0}}^{*}$ such that $\imath\left(\gamma^{\prime}\left(r_{0}\right)\right)=\bar{\gamma}^{\prime}\left(r_{0}\right)$ and $\imath\left(E_{i}\left(r_{0}\right)\right)=$ $\bar{E}_{i}\left(r_{0}\right)$ for an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{\gamma\left(r_{0}\right)} H_{r_{0}}^{*}$ and its parallel basis $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ along γ with $E_{i}\left(r_{0}\right)=e_{i}$ for each i, furthermore $\bar{H}_{r_{0}}^{*}=\exp _{\bar{\gamma}\left(r_{0}\right)} \circ \imath \circ \exp _{\gamma\left(r_{0}\right)}^{-1} H_{r_{0}}^{*}$.
All Riemannian volume comparisons with Bakry-Emery Ricci tensor obtained in the previous section can be stated similarly in a Lorentzian manifold. A Lorentzian manifold M is assumed to be globally hyperbolic so that the Lorentzian distance function is finite valued and continuous (cf. [3]).

Theorem 4.1. Let ($M, g, e^{-f} d \mathrm{vol}_{g}$) be a metric measure space for a globally hyperbolic space-time M and γ be a unit speed timelike geodesic orthogonal to a spacelike hypersurface $H_{r_{0}}^{*}$. Let $\left(\bar{M}(-k), \bar{g}, e^{-h} d \operatorname{vol}_{\bar{g}}, \bar{p}\right)$ be the pointed metric measure space for a space-time of constant curvature $-k(k>0)$ and $\bar{\gamma}$ be a unit speed timelike geodesic orthogonal to a spacelike hypersurface $\bar{H}_{r_{0}}^{*}$. Assume that $\theta_{f}\left(r_{0}\right) \leq \theta_{h}\left(r_{0}\right)$ and $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=e^{-h\left(r_{0}\right)} \operatorname{det} \bar{A}\left(r_{0}\right)$. If $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k, \theta_{f}\left(r_{0}\right) \leq a$ and
$f^{\prime} \leq h^{\prime}=-a$, then we get $\theta_{f} \leq \theta+a=\theta_{h}$ and

$$
V_{r_{0}}^{f}(r) \leq V_{r_{0}}^{h}(r), \quad \frac{V_{r_{0}}^{f}(R)}{V_{r_{0}}^{h}(R)} \leq \frac{V_{r_{0}}^{f}(r)}{V_{r_{0}}^{h}(r)},
$$

where $R(>r)$ is less than the minimum of the focal values of $\bar{H}_{r_{0}}^{*}$ and $H_{r_{0}}^{*}$. Equality holds if and only if each level hypersurface H_{t}^{*} is isometric to \bar{H}_{t}^{*} for $r_{0} \leq t<R$ and $f=h$.

ThEOREM 4.2. Let $\left(M, g, e^{-f} d \mathrm{vol}_{g}\right)$ be a metric measure space for a globally hyperbolic space-time M and γ be a unit speed timelike geodesic orthogonal to a spacelike hypersurface $H_{r_{0}}^{*}$. Let $\left(\bar{M}(-k), \bar{g}, e^{-h} d \mathrm{vol}_{\bar{g}}, \bar{p}\right)$ be the pointed metric measure space for a space-time of constant curvature $-k(k>0)$ and $\bar{\gamma}$ be a unit speed timelike geodesic orthogonal to a spacelike hypersurface $\bar{H}_{r_{0}}^{*}$. Assume that $\theta_{f}\left(r_{0}\right) \leq \theta_{h}\left(r_{0}\right)$ and $e^{-f\left(r_{0}\right)} \operatorname{det} A\left(r_{0}\right)=e^{-h\left(r_{0}\right)} \operatorname{det} \bar{A}\left(r_{0}\right)$. If $\operatorname{Ric}_{f}\left(\gamma^{\prime}, \gamma^{\prime}\right) \geq n k, \theta_{f}\left(r_{0}\right) \geq a$ and $f^{\prime} \geq-a$, then we get $\theta_{f} \leq \bar{\theta}+a=\theta_{h}$ and

$$
V^{f}\left(r_{0}\right) \leq V^{h}\left(r_{0}\right), \quad \frac{V^{f}(R)}{V^{h}(R)} \leq \frac{V^{f}(r)}{V^{h}(r)}
$$

where $r<R \leq r_{0}$. Equality holds if and only if each level hypersurface H_{t}^{*} is isometric to \bar{H}_{t}^{*} for $0<t<r_{0}$.

References

[1] D. Bakry, M. Emery, Diffusions hypercontractive, Seminaire de Probabilites XIX. Lecture Notes Math. 1123, 117-206 (1985)
[2] Jeffrey S. Case, Singularity theorems and the Lorentzian splitting theorem for the Bakry-Emery-Ricci tensor, J. Geom. Phys., 60 (2010), no. 3, 477-490.
[3] P.E. Ehrlich, Y.-T. Jung, S.-B. Kim, Volume comparison theorems for Lorentzian manifolds, Geom. Dedicata 73 (1998), no. 1, 39-56.
[4] J.-H. Eschenburg, Comparison theorems and hypersurfaces, Manuscripta Math. 59 (1987), 295-323.
[5] J.-H. Eschenburg, J. O'Sullivan, Jacobi tensors and Ricci curvature, Math. Ann., 252 (1980), 1-26.
[6] J.R. Kim, Comparisons of the Lorentzian volumes between level hypersurfaces, J. Geom. Phys., 59 (2009), no. 7, 1073-1078.
[7] J.R. Kim, Relative Lorentzian volume comparison with integral Ricci and scalar curvature bound, J. Geom. Phys., 61 (2011), no. 6, 1061-1069.
[8] S.-H. Paeng, Volume comparison between spacelike hypersurfaces in a Lorentzian manifold with integral Ricci curvature bounds, Gen. Relativ. Gravit., 43 (2011), 2089-2102.
[9] P. Petersen, G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal., 7 (1997), 1031-1045.
[10] Qi-hua Ruan, Two rigidity theorems on manifolds with Bakry-Emery Ricci curvature, Proc. Japan Acad. Ser. A, 85 (2009), no. 6, 71-74.
[11] G. Wei, W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differ. Geom., 83 (2009), no. 2, 377-405.
[12] Jia-Yong Wu, Upper Bounds on the First Eigenvalue for a Diffusion Operator via Bakry Emery Ricci Curvature II, Results Math. 63 (2013), no. 3-4, 1079-1094.
[13] J.-G. Yun, Volume comparison for Lorentzian warped products with integral curvature bounds, J. Geom. Phys., 57 (2007), no. 3, 903-912.

Department of Mathematics
Kunsan National University
Kunsan, 573-701, Republic of Korea
E-mail: kimjr0@kunsan.ac.kr

[^0]: Received September 15, 2021; Accepted November 25, 2021.
 2010 Mathematics Subject Classification: Primary 53C20; Secondary 53C50.
 Key words and phrases: Bakry-Emery Ricci tensor, mean curvature, volume comparison, Jacobi equation.

