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RIEMANNIAN AND LORENTZIAN VOLUME

COMPARISONS WITH THE BAKRY-EMERY RICCI

TENSOR

Jong Ryul Kim

Abstract. The Bishop and Bishop-Gromov volume comparisons
with the Bakry-Emery Ricci tensor in a metric measure space are
studied by the comparisons of the Jacobi differential equations in a
Riemannian and Lorentzian manifold.

1. Introduction

Let M be an (n+1)-dimensional complete and simply connected Rie-
mannian manifold with metric g. Given a real valued smooth function f
on M and Riemannian volume density dvolg, a triple (M, g, e−fdvolg) is
called a metric measure space or a weighted manifold. The Bakry-Emery
Ricci tensor Ricf is defined by

(1.1) Ricf = Ric + Hessf,

which becomes the Ricci tensor if f is constant. In connection with the
m-Bakry-Emery Ricci tensor defined by

Ricmf = Ric + Hessf − 1

m
df ⊗ df, for 0 < m ≤ ∞,

the Bakry-Emery Ricci tensor Ricf = Ric∞f is also called the ∞-Bakry-
Emery Ricci tensor. When Ricf = λg for some constant λ, we have a
gradient Ricci soliton which is an important topic in Ricci flow. The dif-
fusion operator on a complete metric measure space via Bakry-Emery
Ricci tensor has geometrical applications ([1] [12]). The Bishop and
Bishop-Gromov volume comparisons with the Bakry-Emery Ricci ten-
sor have been studied in [10], [11]. Let M̄(k) be an (n+ 1)-dimensional
Riemannian manifold of constant curvature k. Given a smooth function
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h(x) = −a·d(x, p̄) for p̄ ∈ M̄ , a positive real number a and the Riemann-
ian distance function d with respect to the metric ḡ on M̄(k), a quadruple
(M̄(k), ḡ, e−hdvolḡ, p̄) is called the pointed metric measure space. Wei
and Wylie proved mean curvature comparison under the Bakry-Emery
Ricci inequality Ricf ≥ nk together with f ′ > −a [11]. Using mean cur-
vature comparison, they showed the Bishop-Gromov volume comparison
in terms of the weighted volume. And Ruan presented the Bishop vol-
ume comparison theorem by using the m-Bakry-Emery Ricci tensor and
weighted Laplacian theorem in [10].

In this paper, we use the f -Jacobi equation (2.9) and (∞, f)-Raychaud
huri equation for a Jacobi tensor along a geodesic introduced for the
study of Lorentzian singularity theorems in [2]. Our motivation is that
the volume comparisons with the Bakry-Emery Ricci tensor can also
be proved by the comparisons of the f -Jacobi differential equations us-
ing Lemma 5 obtained by Eschenburg and O’Sullivan in [5]. We show
the Bishop and Bishop-Gromov volume comparisons between level hy-
persurfaces of geodesic balls with the Bakry-Emery Ricci tensor. A
Lorentzian volume by the language of K-distance wedge defined in [3] is
used to define the Lorentzian weighted volume. The Lorentzian Bishop
and Bishop-Gromov volume comparisons with the Bakry-Emery Ricci
tensor are similarly stated by using the same methods in Riemannian
geometry. From the viewpoint of physics, the Lorentzian f -volume ex-
pansion rate between spacelike hypersurfaces under the m-Bakry-Emery
Ricci tensor condition was considered in [8]. Our Lorentzian f -volume
comparison could also be applied to the relative f -volume comparisons
(cf. [7] [8] [9] [13]).

2. Preliminaries

Let H be a hypersurface in an (n+ 1)-dimensional Riemannian man-
ifold M and γ be a unit-speed geodesic orthogonal to H at γ(r). For
a unit normal vector field N along H with Nγ(r) = γ′(r) and q ∈ H, a
mapping φ : I ×H →M given by

φ(t, q) = exp(t− r)Nq,

where t ∈ I = [r, r1), is called a normal geodesic variation of γ along
the hypersurface H [5]. For each fixed q ∈ H, let γq be the geodesic
given by γq(t) = φ(t, q) and define φt : H → M by φt(q) = φ(t, q) for
q ∈ H. We denote by S−N the shape operator of the hypersurface H.
An H-Jacobi tensor along γ is defined by
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Definition 2.1. Let γ be a unit-speed geodesic orthogonal to a hy-
persurface H at γ(r) with Nγ(r) = γ′(r). A smooth (1, 1) tensor field

A : (γ′)⊥ → (γ′)⊥ associated with φ is called an H-Jacobi tensor along
γ if it satisfies

A′′+R(A, γ′)γ′ = 0, kerA∩kerA′ = {0}, A(r) = Id, A′(r) = S−N ,

where Id is the identity endomorphism of (γ′)⊥. A point γ(t0) for t0 ∈
(r, r1) is called a focal point to H if detA(t0) = 0.

The shape operator S−γ′(t) of each level hypersurface Ht of H associated
with φ is given by as in [5]

A′A−1(t) = S−γ′(t) = St.

We denote by θ(t) = trSt the mean curvature of Ht along γ(t).

Put B = A′A−1 for an H-Jacobi tensor A along γ, then we have

(2.1) B′ = A′′A−1 −A′A−1A′A−1 = −Rγ′ −B ◦B,
where we put R(A, γ′)γ′ = Rγ′A. The mean curvature is also expressed
as

θ = tr(B) =
(det(A))′

det(A)

and the shear tensor σ of A along γ is defined by

σ = B − θ

n
Id.

Note that a variation tensor field A associated with φ is a Lagrange
tensor (Proposition 1 in [5]). So the vorticity 1

2(B−B∗) is zero, where ∗
denotes the adjoint. Taking the trace of (2.1), we get the Raychaudhuri
equation

(2.2) θ′ +
θ2

n
+ Ric(γ′, γ′) + trσ2 = 0,

where Ric(γ′, γ′) =
∑n

i=1 g(R(ei, γ
′)γ′, ei) for an orthonormal basis {ei}ni=1

of γ′⊥.

Put x = (detA)
1
n , then we have

(2.3) x′ =
1

n
xθ, x′′ =

1

n
(θ′ +

θ2

n
)x.

So we obtain the Jacobi equation by (2.2) and (2.3)

x′′ +
1

n
(Ric(γ′, γ′) + trσ2)x = 0.
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Definition 2.2. [2] Let A be an H-Jacobi tensor along a geodesic
γ. For a smooth function f : M → R, define Bf = A′A−1 − 1

n(f ◦ γ)′Id.
The f -expansion θf , f -shear tensor σf of A along γ is defined by

θf = tr(Bf ), σf = Bf −
θf
n

Id,

respectively.

For a measure e−fdvolg, the f -expansion θf of an H-Jacobi tensor along
a geodesic γ can be also expressed as

(2.4) θf =
(e−f detA)′

e−f detA
= θ − f ′.

So we have

σf = Bf −
θf
n

Id = A′A−1 − f ′

n
Id− θ − f ′

n
Id = B − θ

n
Id = σ.

Note that

Hessf(γ′, γ′) = g(Dγ′∇f, γ′) = γ′g(∇f, γ′) = f ′′.

Differentiating (2.4), we have

(2.5) θ′f = θ′ −Hessf(γ′, γ′).

Using σf = σ, (1.1) and (2.5), the Raychaudhuri equation (2.2) is
changed to

θ′f = −(
1

n
θ2+Ric(γ′, γ′)+trσ2)−Hessf(γ′, γ′) = − 1

n
θ2−Ricf (γ′, γ′)−trσ2

f .

So we have

(2.6) θ′f +
1

n
θ2 + Ricf (γ′, γ′) + trσ2

f = 0.

Hence, by inserting (2.4) to the equation (2.6), we get the f -Raychaudhuri
equation as in [2]

(2.7) θ′f +
1

n
(θ2
f + 2θff

′ + (f ′)2) + Ricf (γ′, γ′) + trσ2
f = 0.

Now put xf = (e−f detA)
1
n . Then we see

(2.8) x′f =
1

n
xfθf , x′′f =

1

n
(θ′f +

1

n
θ2
f )xf .



Volume comparisons with the Bakry-Emery Ricci tensor 401

So we obtain the f -Jacobi equation by (2.7) and (2.8)

(2.9) x′′f +
1

n
(Ricf (γ′, γ′) +

2θff
′ + (f ′)2

n
+ trσ2

f )xf = 0.

3. Riemannian volume comparisons with the Bakry-Emery
Ricci tensor

Let M be an (n + 1)-dimensional Riemannian manifold and γ be a
unit speed geodesic with γ(0) = p and γ′(0) = v. Let S(r0) be a sphere
of radius r0 in TpM . Put Sp(r0) = exppS(r0). A Riemannian volume
between Sp(r0) and Sp(r) is defined by

(3.1) Vr0(r) =

∫ r

r0

∫
S(1)
|detA| dvdt

for 0 < r0 < r < injS(1)(p), where dv is the volume element of S(1) and

injS(1)(p) = inf{cutv(p)|v ∈ S(1)}. The weighted volume between the

geodesic ball Sp(r0) and Sp(r) is defined by

(3.2) V f
r0(r) =

∫ r

r0

∫
S(1)
|e−fdetA| dvdt.

Let M̄(k) be an (n+1)-dimensional Riemannian manifold of constant
curvature k as the model space of volume comparison and γ̄ be a unit
speed geodesic with γ̄(0) = p̄ and γ̄′(0) = v̄. For a Jacobi tensor Ā along
γ̄ with Ā(0) = 0 and Ā′(0) = Id, the Jacobi equation along a geodesic γ̄
is given by

x̄′′ + kx̄ = 0.

In order to compare volumes, put Sp̄(r0) = expp̄S(r0) and assume a
linear isometry

(3.3) ı : Tγ(r0)Sp(r0)→ Tγ̄(r0)Sp̄(r0)

such that ı(γ′(r0)) = γ̄′(r0) and ı(Ei(r0)) = Ēi(r0) for an orthonormal
basis {e1, e2, ..., en} of Tγ(r0)Sp(r0) and its parallel basis {E1, E2, ..., En}
along γ with Ei(r0) = ei for each i, furthermore Sp̄(r0) = expγ̄(r0) ◦
ı ◦ exp−1

γ(r0)Sp(r0). The following Lemma is essential for our volume

comparisons.

Lemma 3.1. [5] Suppose u : R→ R is smooth. Let x, x̄ be a smooth
function such that x, x̄ is a solution of the differential inequality x′′ +
ux ≤ 0, x̄′′+ux̄ = 0, respectively, with x̄(t0) = x(t0) and x′(t0) ≤ x̄′(t0).
Suppose that x and x̄ are both positive in some interval [t0, t). Let s,
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s̄ be the first positive zero of x, x̄, respectively. Then s ≤ s̄, x ≤ x̄ on
[t0, s̄] and x′

x ≤
x̄′

x̄ on [t0, s].

Proof. Put h = x
x̄ and g = h′x̄2 = x′x̄ − xx̄′. If x̄(t0) = x(t0) and

x′(t0) ≤ x̄′(t0), then

g(t0) = x′(t0)x̄(t0)− x(t0)x̄′(t0) = (x′(t0)− x̄′(t0))x̄(t0) ≤ 0

and g′ = x′′x̄ − xx̄′′ = (x′′ + ux)x̄ ≤ 0. So g ≤ 0, hence h′ ≤ 0. Since
h(t0) = 1, we see h ≤ 1. Therefore x ≤ x̄. It follows from

x′

x
− x̄′

x̄
=
x′x̄− xx̄′

xx̄
,

g(t0) ≤ 0, g′ ≤ 0 that x′

x ≤
x̄′

x̄ .

We denote by V̄ f
r0(r), V̄r0(r) the f -volume, volume between level hy-

persurfaces in Riemannian manifold M̄(k) of constant curvature k re-
spectively (3.2), (3.1). Under the above notations, we have

Proposition 3.2. Let M̄(k) be an (n+ 1)-dimensional Riemannian

manifold of constant curvature k ≥ 0. Assume that e−f(r0)detA(r0) =
detĀ(r0) and θf (r0) ≤ θ̄(r0) for a complete metric measure space (M, g, e−fdvolg).
If Ricf (γ′, γ′) ≥ nk, θf (r0) ≤ 0 and f ′ ≤ 0, then we get

V f
r0(r) ≤ V̄r0(r),

V f
r0(R)

V̄r0(R)
≤ V f

r0(r)

V̄r0(r)

for 0 < r0 < r < R < injS(1)(p). Equality holds if and only if each

level hypersurface Sp(t) = exppS(t) is isometric to Sp̄(t) = expp̄S(t) for
r0 ≤ t < r and f = 0.

Proof. Assume that e−f(r0)detA(r0) = detĀ(r0) and θf (r0) ≤ θ̄(r0)
with the linear isometry (3.3) ı : Tγ(r0)Sp(r0) → Tγ̄(r0)Sp̄(r0) such that

Sp̄(r0) = expγ̄(r0) ◦ ı ◦ exp−1
γ(r0)Sp(r0). From (2.6) and Ricf (γ′, γ′) ≥ nk,

it follows that

θ′f = −(
1

n
θ2 + Ricf (γ′, γ′) + trσ2

f ) ≤ −Ricf (γ′, γ′) ≤ −nk.

Integration gives ∫ t

r0

θ′f ds ≤ −
∫ t

r0

nk ds

θf (t) ≤ −nk(t− r0) + θf (r0).
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Thus we get θf (t) ≤ 0 under the assumption θf (r0) ≤ 0. Furthermore
we have θf (t)f ′(t) ≥ 0, since we assume f ′(t) ≤ 0. From the f -Jacobi
equation (2.9) along a geodesic γ, it follows that

x′′f (t)

xf (t)
≤ − 1

n
Ricf (γ′(t), γ′(t))− 2

n2
θf (t)f ′(t) ≤ − 1

n
Ricf (γ′(t), γ′(t)),

since trσ2
f ≥ 0 and θf (t)f ′(t) ≥ 0. Thus we get

(3.4) x̄′′ + kx̄ = 0,
x′′f
xf
≤ − 1

n
Ricf (γ′, γ′) ≤ −k.

The inequality (3.4) under e−f(r0)detA(r0) = detĀ(r0) and θf (r0) ≤
θ̄(r0) implies xf ≤ x̄ by Lemma 3.1 . So we obtain the volume inequality

V f
r0(r) ≤ V̄r0(r).

If the equality V f
r0(r) = V̄r0(r) holds, then we have e−fdetA = detĀ.

So θ̄ = θf . Recall that the Raychaudhuri equation in M̄(k) is

(3.5) θ̄′ +
1

n
θ̄2 + nk = 0.

Since θ̄ = θf , we get by subtracting (3.5) from (2.7)

nk − Ricf (γ′, γ′) =
2θff

′

n
+

(f ′)2

n
+ trσ2

f .

By the assumption of Ricf (γ′, γ′) ≥ nk, we get σf = σ = 0 and f ′ = 0.
Therefore we obtain θ̄ = θf = θ. Then we have B̄ = B and we get
Rγ′ = kId from (2.1). The conclusion follows from Theorem 4 in [6].

By Lemma 3.1, we get θf (t) ≤ θ̄(t) for r0 ≤ t < R. The Bishop-
Gromov volume comparison theorem follows from [4] (cf. [3]) under

the assumptions θf (r0) ≤ θ̄(r0) and e−f(r0)detA(r0) = detĀ(r0). If the
equality of the Bishop-Gromov comparison holds, then we get xf = x̄

[4] (cf. [3]), that is e−fdetA = detĀ. The above arguments lead to the
conclusion.

Recall that given a smooth function h(x) = −a · d(x, p̄) for a positive
real number a and p̄ ∈ M̄(k), where M̄(k) is an (n + 1)-dimensional
Riemannian manifold of constant curvature k and d is the Riemann-
ian distance function in M̄ , a quadruple (M̄(k), ḡ, e−hdvolḡ, p̄) is called
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the pointed metric measure space. For the measure e−hdvolḡ, the h-
expansion is given by

θh(t) =
(e−h(t) det Ā(t))′

e−h(t) det Ā(t)
= θ̄(t) + a,

where θ̄(t) is the mean curvature of each level hypersurface Sp̄(t) along
a geodesic γ̄ orthogonal to a hypersurface Sp̄(r0).

Theorem 3.3. Let (M̄(k), ḡ, e−hdvolḡ, p̄) be the pointed metric mea-

sure space for k ≥ 0. For a complete metric measure space (M, g, e−fdvolg),

assume that θf (r0) ≤ θh(r0) and e−f(r0)detA(r0) = e−h(r0)detĀ(r0). If
Ricf (γ′, γ′) ≥ nk, θf (r0) ≤ a and f ′ ≤ −a, then we get

V f
r0(r) ≤ V h

r0(r),
V f
r0(R)

V h
r0(R)

≤ V f
r0(r)

V h
r0(r)

for 0 < r0 < r < R < injS(1)(p). Equality holds if and only if each level

hypersurface Sp(t) is isometric to Sp̄(t) for r0 ≤ t < r and f = h.

Proof. Put hp̄(x) = −a · d(x, p̄), hp(x) = −a · d(x, p) along a unit
speed geodesic γ̄, γ in M̄ , M , respectively. Then we have

hp̄(t) = −a · d(p̄, t) = −at = −a · d(p, t) = hp(t).

For a smooth function f̃ = f−hp onM , we get Ricf̃ (γ′, γ′) = Ricf (γ′, γ′) ≥
nk, since h′′p = 0. We apply Proposition 3.2 for a complete metric mea-

sure space (M, g, e−f̃dvolg) under the assumptions θf−hp(r0) ≤ 0 and
(f − hp)′ ≤ 0 which are equivalent to θf (r0) ≤ a and f ′ ≤ h′p = −a.
With these initial conditions, we have by Lemma 3.1

(3.6) xf−hp ≤ x̄, θf−hp ≤ θ̄.

The inequality (3.6) leads to

xf−hp̄ = (e−(f−hp̄) detA)
1
n ≤ x̄.

Hence we get

(3.7) xf = (e−f detA)
1
n ≤ (e−hp̄)

1
n (det Ā)

1
n = (e−hp̄ det Ā)

1
n = xh.

In the same way, we see that

θf−hp = θf−hp̄ = θ − (f ′ + a) ≤ θ̄

implies

(3.8) θf = θ − f ′ ≤ θ̄ + a = θ̄ − h′p̄ = θh.
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Therefore the volume inequality follows from (3.7) and (3.8). The vol-
ume equality holds if and only if each level hypersurface Sp(t) is isometric
to Sp̄(t) for r0 ≤ t < r and f = h by the same arguments of Proposition

3.2 with f̃ = f − hp.

Recall that we denote by V f
r0(r), Vr0(r) the f -volume, volume between

level hypersurfaces, respectively (3.2), (3.1). We Put V f (r) = V f
0 (r) and

V (r) = Vr0(r).

Proposition 3.4. Let M̄(k) be an (n+ 1)-dimensional Riemannian
manifold of constant curvature k ≥ 0. For a complete metric measure
space (M, g, e−fdvolg), assume that θf (r0) ≤ θ̄(r0) and e−f(r0)detA(r0) =
detĀ(r0). If Ricf (γ′, γ′) ≥ nk, θf (r0) ≥ 0 and f ′ ≥ 0, then we get

V f (r0) ≤ V̄ (r0),
V f (R)

V̄ (R)
≤ V f (r)

V̄ (r)

where r < R ≤ r0. Equality holds if and only if each level hypersurface
Sp(t) is isometric to Sp̄(t) for 0 < t < r0 with f = 0.

Proof. Consider a Jacobi tensor A along a geodesic β(t) = γ(r0 − t)
such that A′A−1 = S−β′(t). Then θf (t) along β(t) for 0 ≤ t ≤ r0 satisfies
(3.4). Integration gives ∫ r0

t
θ′f ds ≤ −

∫ r0

t
nk ds

θf (r0)− θf (t) ≤ −nk(r0 − t).
Hence we get

nk(r0 − t) + θf (r0) ≤ θf (t).

Therefore if θf (r0) ≥ 0, then θf (t) ≥ 0. Under the assumption of f ′ ≥ 0,
we get θf (t)f ′(t) ≥ 0. Hence the conclusions follow from Proposition 3.2
as t approaches zero.

Apply Theorem 3.3 for a smooth function f̃ = f − hp on M and θf̃
along the geodesic β(t) = γ(r0 − t) for 0 ≤ t ≤ r0. Then we get by
Proposition 3.4

Theorem 3.5. Let M̄(k) be an (n+1)-dimensional Riemannian man-
ifold of constant curvature k ≥ 0. For a complete metric measure space
(M, g, e−fdvolg), assume that θf (r0) ≤ θh(r0) and e−f(r0)detA(r0) =
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e−h(r0)detĀ(r0). If Ricf (γ′, γ′) ≥ nk, θf (r0) ≥ a and f ′ ≥ −a, then we
get

V f (r0) ≤ V h(r0),
V f (R)

V h(R)
≤ V f (r)

V h(r)

for 0 < r < R < r0 < injS(1)(p). Equality holds if and only if each level

hypersurface Sp(t) is isometric to Sp̄(t) for 0 < t < r0 with f = h.

4. Lorentzian volume comparisons with the Bakry-Emery
Ricci tensor

Riemannina volume comparisons with the Bakry-Emery Ricci tensor
can be applied very similarly in a Lorentzian manifold by using the K-
distance wedge in [3]. We introduce it here for reader’s convenience. Let
M be an (n+ 1)-dimensional globally hyperbolic space-time and γ be a
unit speed timelike geodesic with γ(0) = p and γ′(0) = v. Take an or-
thonormal basis {e1, ..., en, γ

′(0)} of TpM and let Ei be the parallel field
along γ such that Ei(0) = ei for each i. Consider a geodesic variation

α(t, s) = expp(t(v + sEi))

along γ, then we have a Jacobi field Ji(t) = α∗|(t,0)(
d
ds) = (dexpp)tvtei

such that Ji(0) = 0 and J ′i(0) = ei for each i. Let A be a Jacobi tensor
along γ with the initial conditions A(0) = 0 and A(0)′ = Id, then we
obtain

tn|detα∗|(t,0)| = ||J1(t) ∧ J2(t) ∧ · · · ∧ Jn(t)|| = |detA|.

Let Fut(TpM) be the set of all future directed timelike vectors v ∈ TpM
such that expp(v) is defined and put H(r0) = {v ∈ Fut(TpM)|g(v, v) =

−r2
0}. Let K̄ be a compact subset of H(1). Define the K-distance wedge

BK
p (r) as

BK
p (r) = {expp(tv) | v ∈ K̄, 0 ≤ t ≤ r}

and put V K(r) = Vol(BK
p (r)). Let du, dv be the volume element of

Fut(TpM), K̄, respectively. The Lorentzian volume element is given by
du = tndvdt (Lemma 4.2 [3]) and

V (r) = V K(r) =

∫ r

0

∫
K̄
|detA| dvdt.

for 0 < r < injK̄(p), where injK̄(p) = inf{cutv(p)|v ∈ K̄}.Using the com-
parison of the Jacobi differential equation (Lemma 3.1), the Lorentzian
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version of the Bishop and Bishop-Gromov comparison theorems under
Ric(γ′, γ′) ≥ nk are obtained in [3].

Now we show the Lorentzian version of the Bishop and Bishop-Gromov
comparisons between level hypersurfaces with the Bakry-Emery Ricci
tensor. Let M be an (n+ 1)-dimensional globally hyperbolic space-time
and γ be a unit speed timelike geodesic with γ(0) = p and γ′(0) = v.
Take a compact subset H∗(r0) of H(r0) and put H∗r0 = exppH

∗(r0). The
Lorentzian f -volume between level hypersurfaces H∗r0 and H∗r is defined
by

V f
r0(r) =

∫ r

r0

∫
K̄
|e−fdetA| dvdt

for 0 < r0 < r < injK̄(p).

Let M̄(−k) be an (n+ 1)-dimensional space-time of constant curvature
−k(k > 0) and γ̄ be a unit speed timelike geodesic with γ̄(0) = p̄ and
γ̄′(0) = v̄. For a Jacobi tensor Ā along γ̄ with Ā(0) = 0 and Ā′(0) = Id,
the Jacobi equation along a geodesic γ̄ is given by

x̄′′ + kx̄ = 0

as in [6]. For the Lorentzian distance function d, consider the pointed
metric measure space (M̄(k), ḡ, e−hdvolḡ, p̄), where h : expp̄(Fut(Tp̄M))→
[0,∞) and h(x) = −a · d(x, p̄). Put H̄∗r0 = expp̄H

∗(r0) for a com-

pact subset H∗(r0) of H(r0) ⊂ Tp̄M̄ . We assume a linear isometry
ı : Tγ(r0)H

∗
r0 → Tγ̄(r0)H̄

∗
r0 such that ı(γ′(r0)) = γ̄′(r0) and ı(Ei(r0)) =

Ēi(r0) for an orthonormal basis {e1, e2, ..., en} of Tγ(r0)H
∗
r0 and its paral-

lel basis {E1, E2, ..., En} along γ with Ei(r0) = ei for each i, furthermore
H̄∗r0 = expγ̄(r0) ◦ ı ◦ exp−1

γ(r0)H
∗
r0 .

All Riemannian volume comparisons with Bakry-Emery Ricci tensor ob-
tained in the previous section can be stated similarly in a Lorentzian
manifold. A Lorentzian manifold M is assumed to be globally hyperbolic
so that the Lorentzian distance function is finite valued and continuous
(cf. [3]).

Theorem 4.1. Let (M, g, e−fdvolg) be a metric measure space for a
globally hyperbolic space-time M and γ be a unit speed timelike geodesic
orthogonal to a spacelike hypersurface H∗r0 . Let (M̄(−k), ḡ, e−hdvolḡ, p̄)
be the pointed metric measure space for a space-time of constant cur-
vature −k(k > 0) and γ̄ be a unit speed timelike geodesic orthogo-
nal to a spacelike hypersurface H̄∗r0 . Assume that θf (r0) ≤ θh(r0) and

e−f(r0)detA(r0) = e−h(r0)detĀ(r0). If Ricf (γ′, γ′) ≥ nk, θf (r0) ≤ a and
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f ′ ≤ h′ = −a, then we get θf ≤ θ + a = θh and

V f
r0(r) ≤ V h

r0(r),
V f
r0(R)

V h
r0(R)

≤ V f
r0(r)

V h
r0(r)

,

where R(> r) is less than the minimum of the focal values of H̄∗r0 and
H∗r0 . Equality holds if and only if each level hypersurface H∗t is isometric

to H̄∗t for r0 ≤ t < R and f = h.

Theorem 4.2. Let (M, g, e−fdvolg) be a metric measure space for a
globally hyperbolic space-time M and γ be a unit speed timelike geodesic
orthogonal to a spacelike hypersurface H∗r0 . Let (M̄(−k), ḡ, e−hdvolḡ, p̄)
be the pointed metric measure space for a space-time of constant cur-
vature −k(k > 0) and γ̄ be a unit speed timelike geodesic orthogo-
nal to a spacelike hypersurface H̄∗r0 . Assume that θf (r0) ≤ θh(r0) and

e−f(r0)detA(r0) = e−h(r0)detĀ(r0). If Ricf (γ′, γ′) ≥ nk, θf (r0) ≥ a and
f ′ ≥ −a, then we get θf ≤ θ̄ + a = θh and

V f (r0) ≤ V h(r0),
V f (R)

V h(R)
≤ V f (r)

V h(r)
,

where r < R ≤ r0. Equality holds if and only if each level hypersurface
H∗t is isometric to H̄∗t for 0 < t < r0.
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