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RIEMANNIAN AND LORENTZIAN VOLUME
COMPARISONS WITH THE BAKRY-EMERY RICCI
TENSOR

JoNG Ryur Kim

ABSTRACT. The Bishop and Bishop-Gromov volume comparisons
with the Bakry-Emery Ricci tensor in a metric measure space are
studied by the comparisons of the Jacobi differential equations in a
Riemannian and Lorentzian manifold.

1. Introduction

Let M be an (n+ 1)-dimensional complete and simply connected Rie-
mannian manifold with metric g. Given a real valued smooth function f
on M and Riemannian volume density dvolg, a triple (M, g, e~ dvoly) is
called a metric measure space or a weighted manifold. The Bakry-Emery
Ricci tensor Ricy is defined by

(1.1) Ricy = Ric + Hessf,

which becomes the Ricci tensor if f is constant. In connection with the
m-Bakry-Emery Ricci tensor defined by

1
Ric}" = Ric + Hessf — Edf ®df, for 0 <m < oo,

the Bakry-Emery Ricci tensor Ricy = Ric?Q is also called the co-Bakry-
Emery Ricci tensor. When Ricy = Ag for some constant A, we have a
gradient Ricci soliton which is an important topic in Ricci flow. The dif-
fusion operator on a complete metric measure space via Bakry-Emery
Ricci tensor has geometrical applications ([1] [12]). The Bishop and
Bishop-Gromov volume comparisons with the Bakry-Emery Ricci ten-
sor have been studied in [10], [11]. Let M (k) be an (n + 1)-dimensional
Riemannian manifold of constant curvature k. Given a smooth function
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h(x) = —a-d(x,p) for p € M, a positive real number a and the Riemann-
ian distance function d with respect to the metric g on M (k), a quadruple
(M(k), g, e_hdvolg,;ﬁ) is called the pointed metric measure space. Wei
and Wylie proved mean curvature comparison under the Bakry-Emery
Ricci inequality Ricy > nk together with f* > —a [11]. Using mean cur-
vature comparison, they showed the Bishop-Gromov volume comparison
in terms of the weighted volume. And Ruan presented the Bishop vol-
ume comparison theorem by using the m-Bakry-Emery Ricci tensor and
weighted Laplacian theorem in [10].

In this paper, we use the f-Jacobi equation (2.9) and (0o, f)-Raychaud
huri equation for a Jacobi tensor along a geodesic introduced for the
study of Lorentzian singularity theorems in [2]. Our motivation is that
the volume comparisons with the Bakry-Emery Ricci tensor can also
be proved by the comparisons of the f-Jacobi differential equations us-
ing Lemma 5 obtained by Eschenburg and O’Sullivan in [5]. We show
the Bishop and Bishop-Gromov volume comparisons between level hy-
persurfaces of geodesic balls with the Bakry-Emery Ricci tensor. A
Lorentzian volume by the language of K-distance wedge defined in [3] is
used to define the Lorentzian weighted volume. The Lorentzian Bishop
and Bishop-Gromov volume comparisons with the Bakry-Emery Ricci
tensor are similarly stated by using the same methods in Riemannian
geometry. From the viewpoint of physics, the Lorentzian f-volume ex-
pansion rate between spacelike hypersurfaces under the m-Bakry-Emery
Ricci tensor condition was considered in [8]. Our Lorentzian f-volume
comparison could also be applied to the relative f-volume comparisons

(cf. [7] 8] [9] [13]).

2. Preliminaries

Let H be a hypersurface in an (n + 1)-dimensional Riemannian man-
ifold M and 7 be a unit-speed geodesic orthogonal to H at ~(r). For
a unit normal vector field N along H with N, =~/(r) and ¢ € H, a
mapping ¢ : I x H — M given by

¢(t7 Q) = exp(t - T)N(Ja

where ¢t € I = [r,r1), is called a normal geodesic variation of v along
the hypersurface H [5]. For each fixed ¢ € H, let 7, be the geodesic
given by 7v,(t) = ¢(t,q) and define ¢, : H — M by ¢:(q) = ¢(t,q) for
q € H. We denote by S_pn the shape operator of the hypersurface H.
An H-Jacobi tensor along - is defined by
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DEFINITION 2.1. Let v be a unit-speed geodesic orthogonal to a hy-
persurface H at y(r) with N,y = 7/(r). A smooth (1,1) tensor field

A ()t = (/)* associated with ¢ is called an H-Jacobi tensor along
v if it satisfies

A"+ R(A,Y)y =0, kerAnkerd’ ={0}, A(r)=1d, A'(r)=S_n,

where Id is the identity endomorphism of (7/)*. A point v(to) for tg €
(r,r1) is called a focal point to H if detA(tg) = 0.

The shape operator S_,/(;) of each level hypersurface H; of H associated
with ¢ is given by as in [5]

A/A_l(t) = S—'y’(t) = 5.
We denote by 0(t) = tr.S; the mean curvature of Hy along ~y(t).
Put B = A’A~! for an H-Jacobi tensor A along +y, then we have

(2.1) B =A"A" - AA'AA = -R, -~ BoB,
where we put R(A,7')y = R, A. The mean curvature is also expressed
as
(det(A))’
0 =tr(B) = ——~
MB) = 4era)
and the shear tensor o of A along ~ is defined by
oc=DB- gId.
n

Note that a variation tensor field A associated with ¢ is a Lagrange
tensor (Proposition 1 in [5]). So the vorticity (B — B*) is zero, where x
denotes the adjoint. Taking the trace of (2.1), we get the Raychaudhuri
equation

! 92 : 1) 2
(2.2) 0 +g—|—Rlc(7,7)—|—tra =0,

where Ric(v,v) = 31, g(R(es,7')7', e;) for an orthonormal basis {e; }"
of 4+.
Put z = (detA)%, then we have
1 1 6>
2.3 "= 20 "= (0 + —)a.
(2.3 o= tan =L Dy
So we obtain the Jacobi equation by (2.2) and (2.3)

1
2" + —(Ric(v/,v') + tre?)z = 0.
n
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DEFINITION 2.2. [2] Let A be an H-Jacobi tensor along a geodesic
7. For a smooth function f: M — R, define By = A’/A™! — %(f o)'Id.
The f-expansion O, f-shear tensor oy of A along ~ is defined by

0
0y = tx(By), o5 =Bf— ;fld,

respectively.

For a measure e~/ dvoly, the f-expansion 6y of an H-Jacobi tensor along
a geodesic v can be also expressed as

(e=F det A)'
(24) Or=rama —0 1
So we have
0 / ol
af:Bf—;fId:A’A_l—%Id— f and:B—%Id:a.

Note that

Hessf(7',7) = g(DyV f,7") =+'9(Vf,2) = f".
Differentiating (2.4), we have
(2.5) 0y =60 — Hessf(7', 7).

Using o0y = o, (1.1) and (2.5), the Raychaudhuri equation (2.2) is
changed to

1 1
0 = —(EHQ—I-RiC(’y',’y')+tr02)—Hessf(7’,7') = —EHQ—Rin(WI,W')—tm]%.
So we have
1
(2.6) '+ gGQ + Ricp(v/,7') + traj% =0.

Hence, by inserting (2.4) to the equation (2.6), we get the f-Raychaudhuri
equation as in [2]

1
(2.7) O+ —(0F + 205"+ (f)*) + Ricy (v, 7) + trof = 0.

Now put z; = (e~/ det A)% Then we see

1 1 1
2.8 l= x40 =20, + =01z
(2.8) s nxf £y Ty n( f-l-n f)a:f
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So we obtain the f-Jacobi equation by (2.7) and (2.8)

20, '+ (f")?
n

(2.9) af 4 = (Rle(’)/ 7+ + tra?)xf =0.

3. Riemannian volume comparisons with the Bakry-Emery
Ricci tensor

Let M be an (n + 1)-dimensional Riemannian manifold and v be a
unit speed geodesic with v(0) = p and /(0) = v. Let S(rg) be a sphere
of radius ro in T, M. Put Sy(ro) = exp,S(ro). A Riemannian volume
between Sy, (1) and Sp(r) is defined by

(3.1) Vo (r) = / / (det A| dudt
ro JS(1)

for 0 <rg <r <injg(1)(p), where dv is the volume element of S(1) and
injg1)(p) = inf{cut,(p)lv € S( )}. The weighted volume between the
geodesic ball S, (ro) and Sp(r) is defined by

(3.2) / / le=/ detA| dvdt.

Let M (k) be an (n+ 1)—d1men810nal Riemannian manifold of constant
curvature k as the model space of volume comparison and 4 be a unit
speed geodesic with 4(0) = p and 4(0) = ©. For a Jacobi tensor A4 along
7 with A(0) = 0 and A’(0) = Id, the Jacobi equation along a geodesic 7
is given by

'+ kz = 0.

In order to compare volumes, put S;(rg) = exp;S(rg) and assume a
linear isometry

(33) 7 T’Y(TO)SP(TO) — Tﬁ(ro)Sﬁ(TO)

such that (7/(ro)) = ¥'(r¢) and +(E;(rg)) = E;(rg) for an orthonormal
basis {e1, €2, ..., en} of Ty()Sp(r0) and its parallel basis {Ex, E2, ..., B}
along v with FE;j(ro) = e; for each i, furthermore Sj(rg) = exps(y,) ©
10 exp;(lm)Sp(ro). The following Lemma is essential for our volume
comparisons.

LEMMA 3.1. [5] Suppose u : R — R is smooth. Let z, T be a smooth
function such that x, T is a solution of the differential inequality =" +
ur <0, 2" +ux = 0, respectively, with Z(tg) = z(to) and 2/ (to) < T'(to).
Suppose that x and T are both positive in some interval [tg,t). Let s,
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S be the first positive zero of x, T, respectively. Then s < 5, ¢ < T on
[to, 5] and Z- < % on [to, 5].

T

Proof. Put h = £ and g = W'z? = o'z — 22'. If Z(tg) = x(ty) and
x/(to) < i’l(to), then

g(to) = ' (to)Z(to) — x(to) 7' (to) = ('(to) — Z'(t0))T(to) < 0

and ¢’ = 2% — 27" = (2" + ux)T < 0. So g <0, hence b/ < 0. Since
h(tp) = 1, we see h < 1. Therefore = < z. It follows from
2T — x7’

— )

Trxr

SRS

x
x
<

gto) <0, g’ <0 that £ O

HI‘&‘

We denote by X_/T]; (r), Vio(r) the f-volume, volume between level hy-
persurfaces in Riemannian manifold M (k) of constant curvature k re-
spectively (3.2), (3.1). Under the above notations, we have

PROPOSITION 3.2. Let M (k) be an (n + 1)-dimensional Riemannian
manifold of constant curvature k > 0. Assume that e~ f("0)detA(rg) =
detA(ro) and 04 (o) < O(rg) for a complete metric measure space (M, g, e~/ dvoly,).
If Rics (v, 7') > nk, 0¢(ro) <0 and f' <0, then we get

Vin(R) _ Vin(r)
Vig(R) = Vi (1)
for 0 < 1o < r < R < injgq)(p). Equality holds if and only if each

level hypersurface Sy(t) = exp,,S(t) is isometric to Sj(t) = exp;S(t) for
ro <t<randf=0.

Vi () < Vi (r),

Proof. Assume that e=/("0)detA(rg) = detA(rg) and 64(ro) < 0(ro)
with the linear isometry (3.3) 2 : T (,)Sp(10) — Ty(r0)Sp(70) such that
Sp(ro) = exp(y) 020 exp;(%no)Sp(ro). From (2.6) and Ric¢(v',7') > nk,
it follows that

1
0 = _(592 + Ricy(v,7) + tro}) < —Ricy(v,7) < —nk.

/ Ofds< / nkds

Hf( ) < nk(t—T’o) +9f<7“0)

Integration gives
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Thus we get 0¢(t) < 0 under the assumption 6¢(rg) < 0. Furthermore
we have 0¢(t) f'(t) > 0, since we assume f’(¢t) < 0. From the f-Jacobi
equation (2.9) along a geodesic v, it follows that

t
t

<~ Ries (7 (1), (1)) — 50y (1)F'(8) <~ Ricy(+/(1), 7/ (1),

since tm]% > 0 and 6¢(t) f'(t) > 0. Thus we get

/"
(3.4) #+kz=0, - <_LRic;(v\v) < k.
Ty n

The inequality (3.4) under e~ #(")detA(rg) = detA(ry) and 0f(rg) <
6(ro) implies 7 < Z by Lemma 3.1 . So we obtain the volume inequality
Vi (r) < Vi (1),

If the equality VTJ; (r) = Vo () holds, then we have g_fdetA = detA.
So 0 = 0¢. Recall that the Raychaudhuri equation in M (k) is

1
(3.5) 0 + 592 +nk = 0.
Since 6 = 0, we get by subtracting (3.5) from (2.7)

. ro 205 f o /)2 2
nk — Ricy(v',') = — + o + tros.
By the assumption of Rics(y,7") > nk, we get 0y =0 =0 and f' = 0.
Therefore we obtain § = 0y = 0. Then we have B = B and we get
R, = klId from (2.1). The conclusion follows from Theorem 4 in [6].
By Lemma 3.1, we get 07(¢) < 0(t) for 1o < t < R. The Bishop-
Gromov volume comparison theorem follows from [4] (cf. [3]) under
the assumptions 6 (rg) < (rg) and e~/("0)det A(rg) = detA(ro). If the
equality of the Bishop-Gromov comparison holds, then we get x; =
[4] (cf. [3]), that is e~/detA = detA. The above arguments lead to the
conclusion. ]

Recall that given a smooth function h(x) = —a-d(x,p) for a positive
real number a and p € M(k), where M (k) is an (n + 1)-dimensional
Riemannian manifold of constant curvature k& and d is the Riemann-
ian distance function in M, a quadruple (M (k), g, e "dvolg, p) is called
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the pointed metric measure space. For the measure e_hdvolg, the h-

expansion is given by

(e~ det A(t))’
0 det A1)

where (t) is the mean curvature of each level hypersurface Sz(t) along
a geodesic 4 orthogonal to a hypersurface Sp(ro).

On(t) = =0(t) +a,

THEOREM 3.3. Let (M (k), g, e "dvolg, p) be the pointed metric mea-
sure space for k > 0. For a complete metric measure space (M, g, e*fdvolg),
assume that 0(rg) < 0p,(ro) and e~ f"0)det A(rg) = e "0)det A(rg). If
Ricg(v',v') > nk, 6¢(r0) < a and f' < —a, then we get

Vi (R) _ Vi (r)
Vi(R) = VA()

for 0 < ro <r < R < injg(1)(p). Equality holds if and only if each level
hypersurface Sy(t) is isometric to Sp(t) for ro <t < r and f = h.

h
Vi) <vir),

Proof. Put hz(x) = —a - d(x,p), hp(r) = —a - d(x,p) along a unit
speed geodesic 7, v in M, M, respectively. Then we have

hp(t) = —a-d(p,t) = —at = —a - d(p,t) = hy(t).
For a smooth function f = f—h, on M, we get Ric];(v’, v') = Rics(v/,7) >
nk, since hg = 0. We apply Proposition 3.2 for a complete metric mea-

sure space (M,g,e_fdvolg) under the assumptions 6, (ro) < 0 and
(f = hp)" < 0 which are equivalent to 0¢(rg) < a and f' < h, = —a.
With these initial conditions, we have by Lemma 3.1

(3.6) Tf—h, < T, Gf_hp < 6.
The inequality (3.6) leads to
Ty op, = (e =9) det A)% < Z.
Hence we get
(3.7)  ap= (e det A)n < (e "?)u(det A)w = (e det A)n = a,.
In the same way, we see that
Or p, =05 n, =0— (f +a) <8
implies

(3.8) Op=0—f <0+a=0—h;=0,.

/
D
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Therefore the volume inequality follows from (3.7) and (3.8). The vol-
ume equality holds if and only if each level hypersurface S, () is isometric
to Sp(t) for rg <t < r and f = h by the same arguments of Proposition
3.2 with f = f — h,. O

Recall that we denote by Vi, (1), Vi, (r) the f-volume, volume between

level hypersurfaces, respectively (3.2), (3.1). We Put V/(r) = be (r) and
V(r) = Vi (r).

PROPOSITION 3.4. Let M (k) be an (n + 1)-dimensional Riemannian
manifold of constant curvature k > 0. For a complete metric measure
space (M, g,e~/dvoly), assume that 0;(ro) < 0(ro) and e 7(0)det A(rg) =
detA(ro). If Ricg(y/,+') > nk, 0¢(rg) > 0 and f’ > 0, then we get

VIR) _ VI(r)
V(R) = V(r)
where r < R < rg. Equality holds if and only if each level hypersurface
Sp(t) is isometric to Sp(t) for 0 <t < rg with f = 0.

Vf (TO) < V(T0)7

Proof. Consider a Jacobi tensor A along a geodesic B(t) = y(ro — t)
such that A’A™ = S_g4y. Then 04(t) along 3(t) for 0 <t < rq satisfies

(3.4). Integration gives
0 T0
/ 0} ds < —/ nk ds
t t

Or(ro) — 0¢(t) < —nk(ro —t).
Hence we get
nk(ro —t) +67(ro) < 0(t).

Therefore if 67(rg) > 0, then 0¢(t) > 0. Under the assumption of f' > 0,
we get 0¢(t) f'(t) > 0. Hence the conclusions follow from Proposition 3.2
as t approaches zero. ]

Apply Theorem 3.3 for a smooth function f = f — hp, on M and 6 7
along the geodesic S(t) = v(ro — t) for 0 < t < ryg. Then we get by
Proposition 3.4

THEOREM 3.5. Let M (k) be an (n+1)-dimensional Riemannian man-
ifold of constant curvature k > 0. For a complete metric measure space
(M, g,e~fdvoly), assume that 0;(rg) < O4(ro) and e~f(0)detA(rg) =
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e—h(ro)detﬁ(ro), If Ricg(v',~'") > nk, 0f(r9) > a and f' > —a, then we
get

VIR) _ Vi)

VI(R) = V(r)

for 0 <r < R <ro < injg(1)(p). Equality holds if and only if each level
hypersurface Sy(t) is isometric to Sp(t) for 0 <t < ro with f = h.

VI(ro) < V(ro),

4. Lorentzian volume comparisons with the Bakry-Emery
Ricci tensor

Riemannina volume comparisons with the Bakry-Emery Ricci tensor
can be applied very similarly in a Lorentzian manifold by using the K-
distance wedge in [3]. We introduce it here for reader’s convenience. Let
M be an (n + 1)-dimensional globally hyperbolic space-time and 7 be a
unit speed timelike geodesic with v(0) = p and 4/(0) = v. Take an or-
thonormal basis {eq, ..., e,,7/(0)} of T,M and let E; be the parallel field
along v such that E;(0) = e; for each i. Consider a geodesic variation

a(t, s) = exp,(t(v + sE;))

along 7, then we have a Jacobi field J;(t) = a*](w)(%) = (dexp,)wte;
such that J;(0) = 0 and J/(0) = e; for each i. Let A be a Jacobi tensor
along v with the initial conditions A(0) = 0 and A(0)" = Id, then we
obtain

£ deter| o) = |11 () A Ja(t) A+ A Ju(t)]] = |detAl.

Let Fut(T,M) be the set of all future directed timelike vectors v € T, M
such that exp,(v) is defined and put H(ro) = {v € Fut(T,M)|g(v,v) =
—r2}. Let K be a compact subset of H(1). Define the K-distance wedge
B;((r) as

B (r) = {exp,(tv) | ve K, 0<t<r}
and put VE(r) = VOI(BIf{(r)). Let du, dv be the volume element of

Fut(T,M), K, respectively. The Lorentzian volume element is given by
du = t"dvdt (Lemma 4.2 [3]) and

V(r)=VE@r) = /0 ' /K |det A| dvdt.

for 0 < r < injz(p), where inj gz (p) = inf{cut,(p)|v € K}. Using the com-
parison of the Jacobi differential equation (Lemma 3.1), the Lorentzian
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version of the Bishop and Bishop-Gromov comparison theorems under
Ric(v',v") > nk are obtained in [3].

Now we show the Lorentzian version of the Bishop and Bishop-Gromov
comparisons between level hypersurfaces with the Bakry-Emery Ricci
tensor. Let M be an (n+ 1)-dimensional globally hyperbolic space-time
and 7 be a unit speed timelike geodesic with v(0) = p and 7/(0) = w.
Take a compact subset H*(rg) of H(ro) and put H; = exp,H"(ro). The
Lorentzian f-volume between level hypersurfaces H; and H; is defined

by
Vil (r) //|e TdetA| dvdt

for 0 < ro <r <injg(p).

Let M(—k) be an (n + 1)-dimensional space-time of constant curvature
—k(k > 0) and 4 be a unit speed timelike geodesic with 5(0) = p and
4'(0) = v. For a Jacobi tensor A along 4 with A(0) = 0 and A’(0) = Id,
the Jacobi equation along a geodesic ¥ is given by

' +kzx=0

as in [6]. For the Lorentzian distance function d, consider the pointed
metric measure space (M (k), g, e "dvolg, p), where h : exp;(Fut(Tp M) —

[0,00) and h(z) = —a - d(x,p). Put Hf = exp,H*(rg) for a com-
pact subset H*(rg) of H(rg) C TpM. We assume a linear isometry
v Ty Hyy = Ty Hy,y such that o(y/(ro)) = ¥/(r ) and 1 Ei(rg)) =
E;(ro) for an orthonormal basis {e1, €2, ..., e, } of T. ~(ro)Hy, and its paral-
lel basis { E1, E, ..., By, } along v with E; (To) = ¢; for each i, furthermore

H}, = eXDy(yy) 000 expt H

All Riemannian volume comparisons with Bakry-Emery Ricci tensor ob-
tained in the previous section can be stated similarly in a Lorentzian
manifold. A Lorentzian manifold M is assumed to be globally hyperbolic
so that the Lorentzian distance function is finite valued and continuous

(ct. [3]).

THEOREM 4.1. Let (M, g,e~fdvol 4) be a metric measure space for a
globally hyperbolic space-time M and vy be a unit speed timelike geodesic
orthogonal to a spacelike hypersurface H}, . Let (M(—k), g, e "dvolg, p)
be the pointed metric measure space for a space-time of constant cur-
vature —k(k > 0) and ¥ be a unit speed timelike geodesic orthogo-
nal to a spacelike hypersurface H; . Assume that 6(ro) < 04(ro) and

e~ F)det A(rg) = e ro)det A(ro). If Ricy(v',7') > nk, 0;(ro) < a and
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f' < h' = —a, then we get 6y < 6+ a = 6}, and

Vin(R) _ V()

Var) Ve Uiy S vy

where R(> r) is less than the minimum of the focal values of H and
H . Equality holds if and only if each level hypersurface Hy is isometric
to Hf forrg <t < R and f = h.

THEOREM 4.2. Let (M, g,e~/dvol,) be a metric measure space for a
globally hyperbolic space-time M and v be a unit speed timelike geodesic
orthogonal to a spacelike hypersurface Hy; . Let (M(—k),g,e "dvolg, p)
be the pointed metric measure space for a space-time of constant cur-
vature —k(k > 0) and 4 be a unit speed timelike geodesic orthogo-
nal to a spacelike hypersurface Hy, . Assume that ;(rg) < 0(ro) and
e~ fr0)det A(rg) = e Mro)det A(rg). If Ricy(',~') > nk, 04(ro) > a and
[’ > —a, then we get 0 < 0+ a = 0), and

VI(R) _ VI(r)

VIHR) = Vi(r)’

where r < R < rg. Equality holds if and only if each level hypersurface
Hy is isometric to H for 0 <t < ry.

VI (ro) < V(ry),
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