DOI QR코드

DOI QR Code

A NOTE ON THE INTEGRAL REPRESENTATIONS OF GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE AND MEROMORPHIC FUNCTIONS WITH RESPECT TO AN ENTIRE FUNCTION

  • Received : 2021.05.31
  • Accepted : 2021.08.10
  • Published : 2021.11.30

Abstract

In this paper we wish to establish the integral representations of generalized relative order (𝛼, 𝛽) and generalized relative type (𝛼, 𝛽) of entire and meromorphic functions where 𝛼 and 𝛽 are continuous non-negative functions defined on (-∞, +∞). We also investigate their equivalence relation under some certain condition.

Keywords

Acknowledgement

The authors are thankful to the reviewer for his / her valuable comments towards the improvement of the paper.

References

  1. L. Bernal-Gonzalez: Crecimiento relativo de funciones enteras. Aportaciones al estudio de las funciones enteras con indice exponencial finito. Doctoral Thesis, Universidad de Sevilla, Spain, 1984.
  2. L. Bernal: Orden relative de crecimiento de funciones enteras. Collect. Math. 39 (1988), 209-229.
  3. T. Biswas, C. Biswas & B. Saha: Sum and product theorems relating to generalized relative order (α, β) and generalized relative type (α, β) of entire functions. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 28 (2021), no. 2, 155-185.
  4. T. Biswas & C. Biswas: On some growth properties of composite entire and meromorphic functions from the view point of their generalized type (α, β) and generalized weak type (α, β). South East Asian J. Math. Math. Sci. 17 (2021), no. 1, 31-44.
  5. T. Biswas & C. Biswas: Comparative growth properties of special type of differential polynomial generated by entire and meromorphic functions on the basis of their generalized order (α, β). Tbil. Math. J. 14 (2021), no. 3, 171-186.
  6. T. Biswas & C. Biswas: Some generalized growth properties of composite entire and meromorphic functions. Korean J. Math. 29 (2021), no. 1, 121-136. https://doi.org/10.11568/KJM.2021.29.1.121
  7. T. Biswas, C. Biswas & B. Saha: Entire functions and some of their growth properties of the basis of generalized order (α, β). Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 1735-1747.
  8. T. Biswas & C. Biswas: Some results on generalized relative order (α, β) and generalized relative type (α, β) of meromorphic function with respect to an entire function. Ganita 70 (2020), no. 2, 239-252.
  9. T. Biswas & C. Biswas: Generalized order (α, β) oriented some growth properties of composite entire functions. Ural Math. J. 6 (2020), no. 2, 25-37. https://doi.org/10.15826/umj.2020.2.003
  10. T. Biswas, C. Biswas & R. Biswas: A note on generalized growth analysis of composite entire functions. Poincare J. Anal. Appl. 7 (2020), no. 2, 257-266.
  11. T. Biswas & C. Biswas: Generalized (α, β) order based on some growth properties of wronskians. Mat. Stud. 54 (2020), no. 1, 46-55. https://doi.org/10.30970/ms.54.1.46-55
  12. T. Biswas: On the integral representations of relative (p, q)-th type and relative (p, q)-th weak type of entire and meromorphic functions. J. Fract. Calc. Appl. 10 (2019), no. 1, 68-84.
  13. W.K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs Clarendon Press, Oxford, 1964, 191p.
  14. I. Laine: Nevanlinna Theory and Complex Differential Equations. De Gruyter Studies in Mathematics, Vol. 15. Berlin: Walter de Gruyter & Co., 1993, 341p.
  15. B.K. Lahiri & D. Banerjee: Relative order of entire and meromorphic functions. Proc. Natl. Acad. Sci. India, Sect. A. 69(A) (1999), no. 3, 339-354.
  16. R. Nevanlinna: Zur theorie der meromorphen funktionen. Acta. Math. 46 (1925), no. 1-2, 1-99. https://doi.org/10.1007/BF02543858
  17. M.N. Sheremeta: Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion. Izv. Vyssh. Uchebn. Zaved Mat. 2 (1967) 100-108.
  18. G. Valiron: Lectures on the General Theory of Integral Functions. Chelsea Publishing Company, New York, 1949.
  19. L. Yang: Value distribution theory, Berlin, Heidelberg: Springer-Verlag, 269p, 1993.
  20. L. Yang: Vaule Distribution Theory and Its New Research. Science Press, Beijing, 1988.