참고문헌
- S.A. Al-Mezel, H. Alsulami, E. Karapinar & A. Roldan: Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal. Volume 2014, Article ID 287492.
- V. Berinde & M. Pecurar: Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces. Fixed Point Theory Appl. 2012, 115.
- T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
- B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
- B.S. Choudhury, N. Metiya & M. Postolache: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013, 152.
- B. Deshpande & A. Handa: Coincidence point results for weak ψ-φ contraction on partially ordered metric spaces with application. Facta Universitatis Ser. Math. Inform. 30 (2015), no. 5, 623-648.
- B. Deshpande & A. Handa: On coincidence point theorem for new contractive condition with application. Facta Universitatis Ser. Math. Inform. 32 (2017), no. 2, 209-229. https://doi.org/10.22190/FUMI1702209D
- B. Deshpande, A. Handa & C. Kothari: Coincidence point theorem under Mizoguchi-Takahashi contraction on ordered metric spaces with application. Int. J. Math. Appl. 3 (2015), no. (4-A), 75-94.
- B. Deshpande, A. Handa & C. Kothari: Existence of coincidence point under generalized nonlinear contraction on partially ordered metric spaces. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 23 (2016), no. 1, 35-51.
- I.M. Erhan, E. Karapinar, A. Roldan & N. Shahzad: Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014, 207.
- D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987), no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
- A. Handa, R. Shrivastava & V. K. Sharma: Coincidence point results for contraction mapping principle on partially ordered metric spaces with application to ordinary differential equations. Adalaya Journal 8 (2019), no. 9, 734-754.
- G. Jungck: Compatible mappings and common fixed points. Internat. J. Math. & Math. Sci. 9 (1986), no. 4, 771-779. https://doi.org/10.1155/S0161171286000935
- G. Jungck & B.E. Rhoades: Fixed point for set-valued functions without continuity. Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
- V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
- A. Meir & E. Keeler: A theorem on contraction mappings. J. Math. Anal. Appl. 28 (1969), 326-329. https://doi.org/10.1016/0022-247x(69)90031-6
- B. Samet: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 72 (2010), 4508-4517. https://doi.org/10.1016/j.na.2010.02.026
- B. Samet, E. Karapinar, H. Aydi & V.C. Rajic: Discussion on some coupled fixed point theorems. Fixed Point Theory Appl. 2013, 50.