DOI QR코드

DOI QR Code

Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mahmood, Shaid (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Al Naim, Abdullah F. (Department of Physics, College of Science, King Faisal University) ;
  • Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir)
  • 투고 : 2020.11.22
  • 심사 : 2020.12.18
  • 발행 : 2021.01.25

초록

Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

키워드

과제정보

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

참고문헌

  1. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. http://dx.doi.org/10.12989/acc.2018.6.6.585.
  2. Barany, M., Barron, J.T., Gu, L. and Barany, K. (2001), "Exchange of the actin-bound nucleotide in intact arterial smooth muscle", J. Biol. Chem., 276, 48398-48403. https://doi.org/10.1074/jbc.M106227200.
  3. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  4. Bennett, V. and Baines, A.J. (2001), "Spectrin and ankyrin-based pathways: metazoan inventions forintegrating cells into tissues", Physiolog. Rev., 81(3), 1353-1392. https://doi.org/10.1152/physrev.2001.81.3.1353.
  5. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.10.
  6. Cammarata, R. (1997), "Surface and interface stress effects on interfacial and nanostructured materials", Mater. Sci. Eng.: A, 237(2), 180-184. https://doi.org/10.1016/S0921-5093(97)00128-7.
  7. Chami, K., Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
  8. Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Molec. Cell biol., 5(8), 601-613. https://doi.org/10.1038/nrm1438.
  9. Chen, C., Yin, L., Song, X., Yang, H., Ren, X., Gong, X., ... & Yang, L. (2016), "Effects of vimentin disruption on the mechanoresponses of articular chondrocyte", Biochem. Biophys. Res. Commun., 469(1), 132-137. https://doi.org/10.3390/cells7100147.
  10. Chen, T., Chiu, M.S. and Weng, C.N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids", J. Appl. Phys., 100(7), 074308. https://doi.org/10.1063/1.2356094.
  11. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. http://dx.doi.org/10.12989/acc.2019.7.2.065.
  12. Elzinga, M., Collins, J.H., Kuehl, W.M. and Adelstein, R.S. (1973), "Complete amino-acid sequence of actin of rabbit skeletal muscle", Proc. Nat. Acad. Sci., 70(9), 2687-2691. https://doi.org/10.1073/pnas.70.9.
  13. Fan, F., Lei, B., Sahmani, S. and Safaei, B. (2020), "On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates", Thin Wall. Struct., 154, 106841. https://doi.org/10.1016/j.tws.2020.106841.
  14. Fan, F., Safaei, B. and Sahmani, S. (2020), "Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis", Thin Wall. Struct., 107231. https://doi.org/10.1016/j.tws.2020.107231.
  15. Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1016/j.tws.2020.107231.
  16. Felgner, H., Frank, R. and Schliwa, M. (1996), "Flexural rigidity of microtubules measured with the use of optical tweezers", J. Cell Sci., 109(2), 509-516. https://doi.org/10.1529/biophysj.104.055483.
  17. Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P. and Weitz, D.A. (2004), "Elastic behavior of cross-linked and bundled actin networks", Sci., 304(5675), 1301-1305. https://doi.org/10.1126/science.1095087.
  18. Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Ind. J. Phys., 93(1), 47-52. https://doi.org/10.1007/s12648-018-1254-9.
  19. Ghoshdastider, U., Jiang, S., Popp, D. and Robinson, R.C. (2015), "In search of the primordial actin filament", Proc. Nat. Acad. Sci., 112(30), 9150-9151. https://doi.org/10.1073/pnas.1511568112.
  20. Gibbs, J.W. (1906), The Scientific Papers of J. Willard Gibbs, Vol. 1, Longmans, Green and Company.
  21. Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I. and McIntosh, J.R. (2005), "Force production by disassembling microtubules", Nature, 438(7066), 384-388. https://doi.org/10.1021/bi00480a014.
  22. Gu, B., Mai, Y.W. and Ru, C.Q (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3-4), 195-209. https://doi.org/10.1007/s00707-008-0121-8.
  23. Gunning, P.W., Ghoshdastider, U., Whitaker, S., Popp, D. and Robinson, R.C. (2015), "The evolution of compositionally and functionally distinct actin filaments", J. Cell. Sci., 128(11), 2009-2019. https://doi.org/10.1242/jcs.165563.
  24. Gurtin, M.E., Weissmüller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philosoph. Mag. A, 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977.
  25. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  26. Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481.
  27. Halliburton, W. (1887), "On muscle-plasma", J. Physiol., 8(3-4), 133. https://doi.org/10.1113/jphysiol.1887.sp000252.
  28. Holmes, K.C., Pop, D., Gebhard, W. and Kabsch, W. (1990), "The most detailed model of the actin filament available at present", Nature, 347, 44-49. https://doi.org/10.1038/347044a0.
  29. Hutchinson, J. (2001), "Closure to "On shear coefficients for timoshenko beam theory" (2001, ASME J. Appl. Mech., 68, 959)", J. Appl. Mech., 68(6), 960-961. https://doi.org/10.1115/1.1406957.
  30. Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), "Twisted growth and organization of cortical microtubules", J. Plant Res., 120(1), 61-70. https://doi.org/10.1007/s10265-006-0039-y.
  31. Janosi, L., Mori, H., Sekine, Y., Abragan, J., Janosi, R., Hirokawa, G. and Kaji, A. (2000), "Mutations influencing the frr gene coding for ribosome recycling factor (RRF)", J. Molecul. Biol., 295(4), 815-829. https://doi.org/10.1006/jmbi.1999.3401.
  32. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39. http://dx.doi.org/10.12989/acc.2015.3.1.039.
  33. Khatir, S., Khatir, T., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Bui, T.Q., ... & Abdel-Wahab, M. (2020), "An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA", Smart Struct. Syst., 25(5), 605-617. https://doi.org/10.12989/sss.2020.25.5.605.
  34. Landau, L. and Lifshitz, E.M. (1986), "Theoretical physics. Vol. 6. Hydrodynamics", Nauka, Moscow. https://doi.org/10.1134/S0021364009010044.
  35. Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
  36. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. http://dx.doi.org/10.12989/acc.2017.5.5.539.
  37. Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press. https://doi.org/10.1017/CBO9780511607318.
  38. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B. and Qin, Z. (2020), "Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers", Eng. Struct., 222, 111141. https://doi.org/10.1016/j.engstruct.2020.111141.
  39. Nebab, M., Atmane, H.A., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  40. Nebab, M., Benguediab, S., Atmane, H. A. and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. http://dx.doi.org/10.12989/gae.2020.22.5.415.
  41. Oriol, C., Dubord, C. and Landon, F. (1977), "Crystallization of native striated-muscle actin", FEBS Lett., 73(1), 89-91. https://doi.org/10.1016/0014-5793(77)80022-7.
  42. Otterbein, L.R., Graceffa, P. and Dominguez, R. (2001), "The crystal structure of uncomplexed actin in the ADP state", Sci., 293(5530), 708-711. https://doi.org/10.1126/science.1059700.
  43. Park, H.S., Klein, P.A. and Wagner, G.J. (2006), "A surface Cauchy-Born model for nanoscale materials", Int. J. Numer. Meth. Eng., 68(10), 1072-1095. https://doi.org/10.1002/nme.1754.
  44. Pollard, T.D. and Cooper, J.A. (2009), "Actin, a central player in cell shape and movement", Sci., 326(5957), 1208-1212. https://doi.org/10.1126/science.1175862.
  45. Qian, X.S., Zhang, J.Q. and Ru, C.Q. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.
  46. Radi, Z.A. and Khan, N.K. (2006), "Comparative expression and distribution of c-fos, estrogen receptora (ERa), and p38a in the uterus of rats, monkeys, and humans", Toxicol. Pathol., 34(4), 327-335. https://doi.org/10.3390/ani10020334.
  47. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  48. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  49. Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Molecul. Graph. Model., 65, 43-60. https://doi.org/10.1016/j.jmgm.2016.02.001.
  50. Sahmani, S. and Safaei, B. (2021), "Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect", Appl. Math. Model., 89, 1792-1813. https://doi.org/10.1016/j.apm.2020.08.039.
  51. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  52. Straub, F. and Feuer, G. (1950), "Adenosinetriphosphate the functional group of actin", Biochimica Biophysica Acta, 4, 455-470. https://doi.org/10.1021/ja01188a515.
  53. Taj, M. and Zhang, J. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Biophys. Res. Commun., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072.
  54. Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
  55. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  56. Timoshenko, S.P. and Gere, J.M. (2009), Theory of Elastic Stability, Courier Corporation.
  57. Tsuda, Y., Yasutake, H., Ishijima, A. and Yanagida, T. (1996), "Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation", Proc. Nat. Acad. Sci., 93(23), 12937-12942. https://doi.org/10.1073/pnas.93.23.
  58. Vaziri, A., Lee, H. and Mofrad, M.K. (2006), "Deformation of the cell nucleus under indentation: mechanics and mechanisms", J. Mater. Res., 21(8), 2126-2135. https://doi.org/10.1557/JMR.2006.0262.
  59. Vindin, H. and Gunning, P. (2013), "Cytoskeletal tropomyosins: choreographers of actin filament functional diversity", J. Muscle Res. Cell Motil., 34(3-4), 261-274. http://dx.doi.org/10.1007/ 978-0-387-84847-1_10.
  60. Von der Ecken, J., Müller, M., Lehman, W., Manstein, D.J., Penczek, P.A. and Raunser, S. (2015), "Structure of the F-actin-tropomyosin complex", Nature, 519(7541), 114-117. https://doi.org/10.1038/nature14033.
  61. Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901.
  62. Wang, G.F. and Feng, X.Q. (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Lett., 90(23), 231904. https://doi.org/10.1063/1.2746950.
  63. Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505.
  64. Wang, Y. and Qian, J. (2019), "Buckling of filamentous actin bundles in filopodial protrusions", Acta Mechanica Sinica, 35(2), 365-375. https://doi.org/10.1007/s10409-019-00838-1.
  65. Woody, R., Roberts, G., Clark, D. and Bayley, P. (1982), "1H NMR evidence for flexibility in microtubule‐associated proteins and microtubule protein oligomers", FEBS Lett., 141(2), 181-184. https://doi.org/10.1111/j.1432-1033.1977.tb11726.
  66. Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M.A. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248(15), 112497. https://doi.org/10.1016/j.compstruct.2020.112497.