DOI QR코드

DOI QR Code

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda (Department of Civil Engineering, National Institute of Technology Agartala) ;
  • Thokchom, Suresh (Department of Civil Engineering, Manipur Institute of Technology) ;
  • Debbarma, Rama (Department of Civil Engineering, National Institute of Technology Agartala)
  • 투고 : 2019.09.12
  • 심사 : 2020.12.18
  • 발행 : 2021.01.25

초록

Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

키워드

참고문헌

  1. Al-khalaf, M.N. and Yousift, H.A. (1984), "Use of rice husk ash in concrete", Int. J. Cement Compos. Light Weight Concrete, 6(4), 241-248. https://doi.org/10.1016/0262-5075(84)90019-8
  2. Andrew, R.M. (2019), "Global CO2 emissions from cement production, 1928-2018", Earth Syst. Sci. Data, 11(4), 1675- 1710. https://doi.org/10.5194/essd-11-1675-2019.
  3. Barbosa, V.F.F., Mackenzie, K.J.D. and Thaumaturgo, C. (2000), "2000, Valeria. F.F. Barbosa", Int. J. Inorg. Mater., 2, 309-317. https://doi.org/10.1016/S1466-6049(00)00041-6.
  4. Boateng, A.A. and Skeete, D.A. (1990), "Incineration of rice hull for use as a cementitious material: the guyana experience", Cement Concrete Res., 20, 795-802. https://doi.org/10.1016/0008-8846(90)90013-N.
  5. Brew, D.R.M. and MacKenzie, K.J.D. (2007), "Geopolymer synthesis using silica fume and sodium aluminate", J. Mater. Sci., 42(11), 3990-3993. https://doi.org/10.1007/s10853-006-0376-1.
  6. Davidovits, J. (1994), "Global warming impact on the cement and aggregates industries", World Resour. Rev., 6(2), 263-278.
  7. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and Van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Coll. Surf. A: Physicochem. Eng. Aspect., 269(1-3), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
  8. FAO Statistical Yearbook (2018), World Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome.
  9. Fernandez-Jimenez, A. and Palomo, A. (2005), "Composition and microstructure of alkali activated fly ash binder: Effect of the activator", Cement Concrete Res., 35(10), 1984-1992. https://doi.org/10.1016/j.cemconres.2005.03.003.
  10. Goriparthi, M.R. (2017), "Effect of fly ash and GGBS combination on mechanical and durability properties of GPC", Adv. Concrete Constr., 5(4), 313-330. https://doi.org/10.12989/acc.2017.5.4.313.
  11. Hajimohammadi, A. and van Deventer, J.S.J. (2016), "Solid reactant-based geopolymers from rice hull ash and sodium aluminate", Waste Biomass Valoriz., 1-10. https://doi.org/10.1007/s12649-016-9735-6.
  12. Hajimohammadi, A., Provis, J.L. and Van Deventer, J.S.J. (2010), "Effect of alumina release rate on the mechanism of geopolymer gel formation", Chem. Mater., 22(3), 5199-5208. https://doi.org/10.1021/cm101151n.
  13. He, P., Jia, D. and Wang, S. (2013), "Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor", J. Eur. Ceram. Soc., 33(4), 689-698. https://doi.org/10.1016/j.jeurceramsoc.2012.10.019.
  14. Jaarsveld, J.G.S.V.A.N., Deventer, J.S.J.V.A.N. and Lorenzen, L. (1998), "Factors affecting the immobilization of metals in geopolymerized flyash", Metal. Mater. Tran. B, 29(B), 283-291. https://doi.org/10.1007/s11663-998-0032-z
  15. Jain, A.K., Sharma, S.K. and Singh, D. (1996), "Reaction kinetics of paddy husk thermal decomposition", IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, Washington, DC, USA.
  16. Jakobsson, S. (2002), "Spectroscopic techniques determination of Si/Al Ratios in Semicrystalline Aluminosilicates by FT-IR Spectroscopy", Appl. Spectroscopy, 56(6), 797-799. https://doi.org/10.1366/000370202760077559
  17. Khater, H.M. (2013), "Effect of silica fume on the characterization of the geopolymer materials", Int. J. Adv. Struct. Eng., 5(1), 12. https://doi.org/10.1186/2008-6695-5-12.
  18. Khater, H.M. (2014), "Studying the effect of thermal and acid exposure on alkali-activated slag geopolymer", Adv. Cement Res., 26(1), 1-9. https://doi.org/10.1680/adcr.11.00052.
  19. Kim, Y.Y., Lee, B., Saraswathy, V. and Kwon, S. (2014), "Strength and durability performance of alkali-activated rice husk ash geopolymer mortar", Scientif. World J., 2014, 1-10. http://dx.doi.org/10.1155/2014/209584.
  20. Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K.N. and Kyritsi, A. (2008), "Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash", Microporous Mesoporous Mater., 115, 189-196. https://doi.org/10.1016/j.micromeso.2007.12.032.
  21. Kuncaka, A. (2011), "Utilization of rice husk as raw material in synthesis of mesoporous silicates mcm-41", Indo. J. Chem., 11(3), 279-284. https://doi.org/10.22146/ijc.21393
  22. Lafhaj, Z., Goueygou, M., Djerbi, A. and Kaczmarek, M. (2006), "Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and watercontent", Cement Concrete Res., 36(4), 625-633. https://doi.org/10.1016/j.cemconres.2005.11.009.
  23. Lee, S.T., Moon, H.Y., Hooton, R.D. and Kim, J.P. (2005), "Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solutions", Cement Concrete Res,, 35(7), 1314-1323. https://doi.org/10.1016/j.cemconres.2004.10.035.
  24. Mehata, P.K. and Pitt, N. (1976), "Energy and industrial materials from crop residues", Resour. Recovery Conserv., 2, 23-38. https://doi.org/10.1016/0304-3967(76)90015-9
  25. Mozgawa, W., Krol, M., Barczyk, K. and Science, M. (2011), "FT-IR studies of zeolites from different structural groups", Chemik, 65(7), 671-674.
  26. Naskar, M.K., Kundu, D. and Chatterjee, M. (2011), "Coral-like hydroxy sodalite particles from rice husk ash as silica source", Mater. Lett., 65(23-24), 3408-3410. https://doi.org/10.1016/j.matlet.2011.07.084.
  27. Phair, J.W. and Van Deventer, J.S.J. (2002), "Characterization of fly-ash-based geopolymeric binders activated with sodium aluminate", Indus. Eng. Chem. Res., 41(17), 4242-4251. https://doi.org/10.1021/ie010937o.
  28. Praven, Mehta, A. and Saloni. (2019), "Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete", Adva. Concrete Constr., 7(4), 231-239. https://doi.org/10.12989/acc.2019.7.4.231.
  29. Provis, J.L. and Van Deventer, J.S.J. (2014), "Alkali activated materials, State-of-the-art report", RILEM TC 224-AAM, Springer, Dordrecht, 1-9.
  30. Rashad, A.M. and Zeedan, S.R. (2011), "The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load", Constr. Build. Mater., 25(7), 3098-3107. https://doi.org/10.1016/j.conbuildmat.2010.12.044.
  31. Rashad, A.M., Bai, Y., Basheer, P.A.M., Milestone, N.B. and Collier, N.C. (2013), "Hydration and properties of sodium sulfate activated slag", Cement Concrete Compos., 37(1), 20-29. https://doi.org/10.1016/j.cemconcomp.2012.12.010.
  32. Rattanasak, U. and Chindaprasirt, P. (2009), "Influence of NaOH solution on the synthesis of fly ash geopolymer", Mineral. Eng., 22(12), 1073-1078. https://doi.org/10.1016/j.mineng.2009.03.022.
  33. Rattanasak, U., Chindaprasirt, P. and Suwanvitaya, P. (2010), "Development of high volume rice husk ash alumino silicate composites", J. Mineral. Metal. Mater., 17(5), 654-659. https://doi.org/10.1007/s12613-010-0370-0.
  34. Shaikh, F. and Haque, S. (2018), "Effect of nano silica and fine silica sand on compressive strength of sodium and potassium activators synthesised fly ash geopolymer at elevated temperatures", Fire Mater., 42(3), 324-335. https://doi.org/10.1002/fam.2496.
  35. Sharma, P., Kaur, R., Baskar, C. and Chung, W. (2010), "Removal of methylene blue from aqueous waste using rice husk and rice husk ash", Desalination, 259, 249-257. https://doi.org/10.1016/j.desal.2010.03.044.
  36. Singhal, D. and Jindal, B.B. (2017), "Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine", Adv. Concrete Constr., 5(4), 345-358. https://doi.org/10.12989/acc.2017.5.4.345.
  37. Sturm, P., Gluth, G.J.G., Brouwers, H.J.H. and Khne, H.C. (2016), "Synthesizing one-part geopolymers from rice husk ash", Constr. Build. Mater., 124, 961-966. https://doi.org/10.1016/j.conbuildmat.2016.08.017.
  38. Thokchom, S., Ghosh, P. and Ghosh, S. (2011), "Durability of fly ash geopolymer mortars in nitric acid-effect of alkali (Na 2 o) content", J. Civil Eng. Manage., 17(3), 393-399. https://doi.org/10.3846/13923730.2011.594225.
  39. U.S. Geological Survey (2019), Mineral Commodity Summaries 2019, U.S. Geological Survey.
  40. Valipour, M., Yekkalar, M., Shekarchi, M. and Panahi, S. (2013), "Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments", J. Clean. Prod., 1-6. https://doi.org/10.1016/j.jclepro.2013.07.055.
  41. Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1-3), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016.
  42. Yusof, A.M., Nizam, N.A. and Abd Rashid, N.A. (2010), "Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites", J. Porous. Mater., 17, 39-47. https://doi.org/10.1007/s10934-009-9262-y.