참고문헌
- ACI 211.1 (1991), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- ACI 211.4R, Guide for Selecting Proportions for High-Strength Concrete Using Portland Cement& Other Cementitious Material, American Concrete Institute, Farmington Hills, MI, USA.
- ACI 363R (1998), Guide to Quality Control and Testing of High-Strength Concrete, American Concrete Institute Farmington Hills, MI, USA.
- Aitcin, P.C. (1988), High Performance Concrete, E & FN Spon, London.
- Anandaraj, S., Rooby, J., Awoyera, P.O. and Gobinath, R. (2019), "Structural distress in glass fibre-reinforced concrete under loading and exposure to aggressive environments", Constr. Build. Mater., 197, 862-870. https://doi.org/10.1016/j.conbuildmat.2018.06.090.
- Andreasen, A.H.M. and Andersen, J. (1930), "Uber die Beziehungen zwischen Kornabstufungen und Zwischen raum in ProduktenauslosenKornern (miteinigenExperimenten)", Kolloid Z., 50, 217-228. (in German) https://doi.org/10.1007/BF01422986
- ASTM C1202-12 (2012), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society of Testing and Material.
- ASTM C1437 (2015), Standard Test Method for Flow of Hydraulic Cement Mortar, American Society of Testing and Material.
- ASTM C1585-04 (2004), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, American Society of Testing and Material.
- Bindiganavile, V. and Banthia, N. (2001), "Polymer and steel fiber-reinforced cementitious composites under impact loading-Part 1: Bond-slip response", Mater. J., 98(1), 10-16.
- BIS 5816 (1999), Method of Test Splitting Tensile Strength of Concrete (CED 2: Cement and Concrete), Bureau of Indian Standards, New Delhi, India.
- BIS 650 (1991), Standard Sand for Testing Cement Specification, Bureau of Indian Standards, New Delhi, India.
- Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane, S. (2015), "Failure mechanism of fibre reinforced concrete under splitting test using digital image correlation", Mater. Struct., 48(8), 2713-2726. https://doi.org/10.1617/s11527-014-0348-x.
- Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction", Adv. Concrete Constr., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195.
- De Larrard, F. and Sedran, T. (1994), "Optimization of ultra-highperformance concrete by the use of a packing model", Cement Concrete Res., 24(6), 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1.
- De Larrard, F. and Sedran, T. (2002), "Mixture-proportioning of high-performance concrete", Cement Concrete Res., 32(11), 1699-1704. https://doi.org/10.1016/S0008-8846(02)00861-X.
- Du, H. and Dai Pang, S. (2020), "High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute", Constr. Build. Mater., 264, 120152. https://doi.org/10.1016/j.conbuildmat.2020.120152.
- Fuller, W.B. and Thompson, S.E. (1907), "The laws of proportioning concrete", Tran. Am. Soc. Civil Eng., 59, 67-14. https://doi.org/10.1061/TACEAT.0001979
- Funk, J.E. and Dinger, D.R. (2013), Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing, Springer Science & Business Media.
- Ganesan, N., Indira, P.V. and Sabeena, M.V. (2014), "Behaviour of hybrid fibre reinforced concrete beam-column joints under reverse cyclic loads", Mater. Des., 54, 686-693, https://doi.org/10.1016/j.matdes.2013.08.076.
- Graybeal, B.A. (2006), "Material property characterization of ultra-high performance concrete", No. FHWA-HRT-06-103.
- Grunewald, S. (2004), "Performance-based design of selfcompacting fibre reinforced concrete", Ph.D. Dissertation, Delft University of Technology, Netherlands.
- Guneyisi, E., Gesoglu, M. and Algin, Z. (2013), "Performance of self-compacting concrete (SCC) with high-volume supplementary cementitious materials (SCMs)", Eco-Efficient Concrete, Woodhead Publishing, 198-217.
- Hassan, K.E., Cabrera, J.G. and Maliehe, R.S. (2000), "The effect of mineral admixtures on the properties of high-performance concrete", Cement Concrete Compos., 22(4), 267-271. https://doi.org/10.1016/S0958-9465(00)00031-7.
- IS 4031-6 (1988), Methods of Physical Tests for Hydraulic Cement, Part 6: Determination of Compressive Strength of Hydraulic Cement (other than masonry cement), (Bureau of Indian Standards), New Delhi.
- Khaloo, A.R., Karimi, H., Asadollahi, S. and Dehestani, M. (2017), "A new mixture design method for ultra-high-strength concrete", ACI Mater. J., 114(2), 215-224.
- Kumar, V.V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concrete Constr., 7(2), 75-85. http://dx.doi.org/10.12989/acc.2019.7.2.075.
- Kwon, S., Nishiwaki, T., Kikuta, T. and Mishashi, H. (2013), "Tensile behavior of ultra high performance hybrid fiber reinforced cement-based composites", Proceedings of an International Conference, Framcos-8, Toledo, Spain, March, 1309-1314.
- Kwon. S., Nishiwaki. T., Kikuta. T., Mihashi, H. (2014) "Development of ultra-high-performance hybrid fiber-reinforced cement-based composites", ACI Mater. J., 111, 309-318.
- Leung, C. (2001), Concrete as a Building Naterial, Article in Encyclopedia of Materials Science and Technology.
- Limantono, H., Ekaputri, J J. and Susanto, T.E. (2016), "Effect of silica fume and glass powder on high-strength paste", Key Eng. Mater., 673, 37-46. https://doi.org/10.4028/www.scientific.net/KEM.673.37.
- Mehta, P.K. (1991), Structure, Properties and Materials of Concrete, Translated from English by Zhu Yongnian et al., Tongji University Press, Shanghai. (in Chinese)
- Mueller, H.S. and Haist, M. (2009), FIB, Structural Concrete, Text Book on Behaviour, Design and Performance-Updated Knowledge of the CEB/FIP Model Code 1990, fib Bulletin, 1, 35-95.
- Rossi, P. (1987) "High performance multimodal fiber reinforced cement composite (HPMFRCC): The LCPC experience", ACI Mater. J., 94(6), 478-483.
- Salimi, J., Ramezanianpour, A.M. and Moradi, M.J. (2020), "Studying the effect of low reactivity metakaolin on free and restrained shrinkage of high performance concrete", J. Build. Eng., 28, 101053. https://doi.org/10.1016/j.jobe.2019.101053.
- Samad, S. and Shah, A. (2017), "Role of binary cement including supplementary cementitious material (SCM), in production of environmentally sustainable concrete: A critical review", Int. J. Sustain. Built Envir., 6(2), 663-674. https://doi.org/10.1016/j.ijsbe.2017.07.003.
- Scheinherrova, L., Fort, J., Pavlik, Z. and Cerny, R. (2017), "Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC", AIP Conference Proceedings, 1866(1), 040033. https://doi.org/10.1063/1.4994513.
- Sharma, R. and Bansal, P.P. (2019), "Behavior of RC beam column joint retrofitted using UHP-HFRC", Constr. Build. Mater., 195, 376-389. https://doi.org/10.1016/j.conbuildmat.2018.11.052.
- Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.
- Shen, D., Liu, X., Zeng, X., Zhao, X. and Jiang, G. (2020), "Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age", Constr. Build. Mater., 244, 117874. https://doi.org/10.1016/j.conbuildmat.2019.117874.
- Shui, Z., Xuan, D., Wan, H. and Cao, B. (2008), "Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment", Constr. Build. Mater., 22(8), 1723-1729. https://doi.org/10.1016/j.conbuildmat.2007.05.012.
- Siddique, S. Shrivastava, S. and Chaudhary, S. (2018), "Evaluating resistance of fine bone china ceramic aggregate concrete to sulphate attack", Constr. Build. Mater., 186, 826-832. https://doi.org/10.1016/j.conbuildmat.2018.07.138.
- Sing, S., Khan, S., Khandelwal, R., Chug, A. and Nagar, R. (2016), "Performance of sustainable concrete containing granite cutting waste", J. Clean. Prod., 119, 86-98. https://doi.org/10.1016/j.jclepro.2016.02.008.
- Struble, L., Skalny, J. and Mindess, S. (1980), "A review of the cement-aggregate bond", Cement Concrete Res., 10(2), 277-286. https://doi.org/10.1016/0008-8846(80)90084-8.
- Trnik, A., Fort, J., Pavlikova, M., Cachova, M., Citek, D., Kolisko, J. and Pavlik, Z. (2016), "UHPFRC at high temperaturessimultaneous thermal analysis and thermodilatometry", AIP Conference Proceedings, 1752(1), 040028, https://doi.org/10.1063/1.4955259.
- Walraven, J.C. (2009), "High performance fiber reinforced concrete: progress in knowledge and design codes", Mater. Struct., 42(9), 1247. https://doi.org/10.1617/s11527-009-9538-3.
- Wu, H. (2006), Advanced Civil Infrastructure Materials: Science, Mechanics and Applications, Woodhead Publishing.
- Xincheng, P. (2013), Super-High-Strength High Performance Concrete, CRC Press, Tylor and Francis.
- Yu, R., Spiesz, P. and Brouwers H.J.H. (2015), "Development of ultra-high performance fibre reinforced concrete (UHPFRC): towards an efficient utilization of binders and fibres", Constr. Build. Mater., 79, 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)", Cement Concrete Res., 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002.
- Yu, R., Tang, P., Spiesz, P. and Brouwers, H.J.H. (2014), "A study of multiple effects of nano-silica and hybrid fibers on the properties of ultra-high performance fiber reinforced concrete (UHPFRC) incorporating waste bottom ash (WBA)", Constr. Build. Mater., 60, 98-110. https://doi.org/10.1016/j.conbuildmat.2014.02.