DOI QR코드

DOI QR Code

Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures

  • Kim, J.S. (Department of Civil and Environmental Engineering, Korean Advanced Institute of Science and Technology) ;
  • Lee, H.K. (Department of Civil and Environmental Engineering, Korean Advanced Institute of Science and Technology)
  • 투고 : 2020.09.23
  • 심사 : 2020.11.20
  • 발행 : 2021.01.25

초록

The present study fabricated polyvinyl alcohol (PVA) fiber-reinforced alkali-activated slag/fly ash (AASF) composites with varying mixture ratios of slag and fly ash. The thermomechanical behaviors of the AASF composites exposed to 200, 400, 600, or 800℃ were evaluated by means of compressive strength test, visual observation, and fire resistance tests. X-ray diffractometry, mercury intrusion porosimetry, and thermogravimetry tests were performed to analyze the microstructure change of the AASF composites upon exposure to high temperatures. Specimens exhibited a gradual strength loss up to 600℃, while also showing a significant decrease in the strength above 600℃. The fire resistance test revealed the occurrence of an inflection point as indicated by an increase in the internal temperature at around 200℃. In addition, specimens showed the dehydration of C-S-H gel, the presence of åkermanite, gehlenite, and anorthite upon exposure to 800℃, which is associated with the formation of macropore population with pores having diameters of 1-3 ㎛ and 20-40 ㎛. Visual observation indicated that the PVA fibers mitigated the cracking and/or spalling of the specimens upon exposure to 800℃.

키워드

과제정보

This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2017R1A5A1014883). Furthermore, the authors would like to express our deepest gratitude to Mr. S.M. Park and Mr. J.H. Seo for their valuable comments on this manuscript.

참고문헌

  1. Ada, M., Sevim, B., Yuzer, N. and Ayvaz, Y. (2018), "Assessment of damages on a RC building after a big fire", Adv. Concrete Constr., 6(2), 177. http://dx.doi.org/10.12989/acc.2018.6.2.177.
  2. Ahn, Y.B., Jang, J.G. and Lee, H.K. (2016), "Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures", Cement Concrete Compos., 72, 27-38. https://doi.org/10.1016/j.cemconcomp.2016.05.028.
  3. Alonso, C. and Fernandez, L. (2004), "Dehydration and rehydration processes of cement paste exposed to high temperature environments", J. Mater. Sci., 39(9), 3015-3024. https://doi.org/10.1023/B:JMSC.0000025827.65956.18.
  4. Bangi, M.R. and Horiguchi, T. (2012), "Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures", Cement Concrete Res., 42(2), 459-466. https://doi.org/10.1016/j.cemconres.2011.11.014.
  5. Belouadah, M., Rahmouni, Z.E.A. and Tebbal, N. (2018), "Effects of glass powder on the characteristics of concrete subjected to high temperatures", Adv. Concrete Constr., 6(3), 311. http://dx.doi.org/10.12989/acc.2018.6.3.311.
  6. Bernal, S.A., Provis, J.L., Walkley, B., San Nicolas, R., Gehman, J.D., Brice, D.G., Kilcullen, A.R., Duxson, P. and van Deventer, J.S. (2013), "Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation", Cement Concrete Res., 53, 127-144. https://doi.org/10.1016/j.cemconres.2013.06.007.
  7. Celikten, S., Saridemir, M. and Deneme, I.O. (2019), "Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature", Constr. Build. Mater., 217, 50-61. https://doi.org/10.1016/j.conbuildmat.2019.05.055.
  8. Cheng, X., Dong, Q., Ma, Y., Zhang, C., Gao, X., Yu, Y., Wen, Z., Zhang, C. and Guo, X. (2019), "Mechanical and thermal properties of aluminate cement paste with blast furnace slag at high temperatures", Constr. Build. Mater., 228, 116747. https://doi.org/10.1016/j.conbuildmat.2019.116747.
  9. Chore, H. and Joshi, M. (2015), "Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials", Adv. Concrete Constr., 3(3), 223. http://dx.doi.org/10.12989/acc.2015.3.3.223.
  10. Ezziane, M., Kadri, T., Molez, L., Jauberthie, R. and Belhacen, A. (2015), "High temperature behaviour of polypropylene fibres reinforced mortars", Fire Saf. J., 71, 324-331. https://doi.org/10.1016/j.firesaf.2014.11.022.
  11. Ezziane, M., Molez, L., Jauberthie, R. and Rangeard, D. (2011), "Heat exposure tests on various types of fibre mortar", Eur. J. Environ. Civil Eng., 15(5), 715-726. https://doi.org/10.1080/19648189.2011.9693360.
  12. Flower, D.J. and Sanjayan, J.G. (2007), "Green house gas emissions due to concrete manufacture", Int. J. Life Cycle Assess., 12(5), 282. https://doi.org/10.1065/lca2007.05.327.
  13. Guerrieri, M., Sanjayan, J. and Collins, F. (2010), "Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures", Mater. Struct., 43(6), 765-773. https://doi.org/10.1617/s11527-009-9546-3.
  14. Haha, M.B., Le Saout, G., Winnefeld, F. and Lothenbach, B. (2011), "Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags", Cement Concrete Res., 41(3), 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016.
  15. Haha, M.B., Lothenbach, B., Le Saout, G. and Winnefeld, F. (2012), "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part II: Effect of Al2O3", Cement Concrete Res., 42(1), 74-83. https://doi.org/10.1016/j.cemconres.2011.08.005.
  16. Handoo, S., Agarwal, S. and Agarwal, S. (2002), "Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures", Cement Concrete Res., 32(7), 1009-1018. https://doi.org/10.1016/S0008-8846(01)00736-0.
  17. Kim, M.S., Jun, Y., Lee, C. and Oh, J.E. (2013), "Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag", Cement Concrete Res., 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011.
  18. Lee, N., Khalid, H.R. and Lee, H.K. (2016), "Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment", Microporous Mesoporous Mater., 229, 22-30. https://doi.org/10.1016/j.micromeso.2016.04.016.
  19. Lee, N., Koh, K., An, G. and Ryu, G. (2017), "Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures", Ceram. Int., 43(2), 2471-2480. https://doi.org/10.1016/j.ceramint.2016.11.042.
  20. Mendes, A., Sanjayan, J. and Collins, F. (2008), "Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures", Mater. Struct., 41(2), 345. https://doi.org/10.1617/s11527-007-9247-8
  21. Pan, Z., Tao, Z., Cao, Y., Wuhrer, R. and Murphy, T. (2018), "Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature", Cement Concrete Compos., 86, 9-18. https://doi.org/10.1016/j.cemconcomp.2017.09.011.
  22. Park, S.M., Jang, J.G., Lee, N.K. and Lee, H.K. (2016), "Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures", Cement Concrete Res., 89, 72-79. https://doi.org/10.1016/j.cemconres.2016.08.004.
  23. Park, S.M., Seo, J.H. and Lee, H.K. (2018), "Thermal evolution of hydrates in carbonation-cured Portland cement", Mater. Struct., 51(1), 7. https://doi.org/10.1617/s11527-017-1114-7.
  24. Provis, J.L., Palomo, A. and Shi, C. (2015), "Advances in understanding alkali-activated materials", Cement Concrete Res., 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013.
  25. Rashad, A., Bai, Y., Basheer, P., Collier, N. and Milestone, N. (2012), "Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature", Cement Concrete Res., 42(2), 333-343. https://doi.org/10.1016/j.cemconres.2011.10.007.
  26. Rashad, A.M. and Zeedan, S.R. (2011), "The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load", Constr. Build. Mater., 25(7), 3098-3107. https://doi.org/10.1016/j.conbuildmat.2010.12.044.
  27. Rashad, A.M., Sadek, D.M. and Hassan, H.A. (2016), "An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures", J. Clean. Prod., 112, 1086-1096. https://doi.org/10.1016/j.jclepro.2015.07.127.
  28. Rovnanik, P., Bayer, P. and Rovnanikova, P. (2013), "Characterization of alkali activated slag paste after exposure to high temperatures", Constr. Build. Mater., 47, 1479-1487. https://doi.org/10.1016/j.conbuildmat.2013.06.070.
  29. Sahmaran, M., Ozbay, E., Yucel, H.E., Lachemi, M. and Li, V.C. (2011), "Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures", J. Mater. Civil Eng., 23(12), 1735-1745. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000335.
  30. Saridemir, M., Severcan, M., Ciflikli, M., Celikten, S., Ozcan, F. and Atis, C. (2016), "The influence of elevated temperature on strength and microstructure of high strength concrete containing ground pumice and metakaolin", Constr. Build. Mater., 124, 244-257. https://doi.org/10.1016/j.conbuildmat.2016.07.109.
  31. Seo, J.H., Bae, S.J., Jang, D.I., Park, S.M., Yang, B.J. and Lee, H.K. (2020), "Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement", Cement Concrete Compos., 106, 103462. https://doi.org/10.1016/j.cemconcomp.2019.103462.
  32. Shaikh, F. and Taweel, M. (2015), "Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures", Adv. Concrete Constr., 3(4), 283-293. http://dx.doi.org/10.12989/acc.2015.3.4.283.
  33. Turker, H.T., Balcikanli, M., Durmus, L.H., Ozbay, E. and Erdemir, M. (2016), "Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level", Constr. Build. Mater., 104, 169-180. https://doi.org/10.1016/j.conbuildmat.2015.12.070.
  34. Yoon, H.N., Park, S.M. and Lee, H.K. (2018), "Effect of MgO on chloride penetration resistance of alkali-activated binder", Constr. Build. Mater., 178, 584-592. https://doi.org/10.1016/j.conbuildmat.2018.05.156.
  35. Zhao, R. and Sanjayan, J.G. (2011), "Geopolymer and Portland cement concretes in simulated fire", Mag. Concrete Res., 63(3), 163-173. https://doi.org/10.1680/macr.9.00110.