DOI QR코드

DOI QR Code

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan (School of Mechanical and Power Engineering, Guangdong Ocean University) ;
  • Ji, Haixu (School of Mechanical and Power Engineering, Guangdong Ocean University)
  • Received : 2020.07.20
  • Accepted : 2021.01.21
  • Published : 2021.02.10

Abstract

The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Keywords

Acknowledgement

This work was supported by A20237.

References

  1. Abedini, M., Mutalib, A. A., Zhang, C., Mehrmashhadi, J., Raman, S.N., Alipour, R., Momeni, T. and Mussa, M. H. (2019), "Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads", Front. Struct. Civ. Eng., 14(2), 532-553. https://doi.org/10.1007/s11709-020-0604-9.
  2. Abedini, M. and Zhang, C. (2020a), "Blast performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, 113473. https://doi.org/10.1016/j.compstruct.2020.113473.
  3. Abedini, M. and Zhang, C. (2020b), "Performance assessment of concrete and steel material models in ls-dyna for enhanced numerical simulation, a state of the art review", Arch. Comput. Meth. Eng., 1-22. https://doi.org/10.1007/s11831-020-09483-5
  4. Abedini, M., Zhang, C., Mehrmashhadi, J. and Akhlaghi, E. (2020c), "Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column", Structures, 28, 456-466. https://doi.org/10.1016/j.istruc.2020.08.084.
  5. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  6. Al-Furjan, M., Alzahrani, B., Shan, L., Habibi, M. and Jung, D.W. (2020a), "Nonlinear forced vibrations of nanocompositereinforced viscoelastic thick annular system under hygrothermal environment", Mech. Based Des. Struct. Machines, 1-27. https://doi.org/10.1080/15397734.2020.1824795
  7. Al-Furjan, M., Bolandi, S.Y., Shan, L., Habibi, M. and Jung, D.W. (2020b), "On the vibrations of a high-speed rotating multi-hybrid nanocomposite reinforced cantilevered microdisk", Mech. Based Des. Struct. Machines, 1-29. https://doi.org/10.1080/15397734.2020.1828098.
  8. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020c), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7.
  9. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020d), "Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM", Compos. Struct., 252, 112737. https://doi.org/10.1016/j.compstruct.2020.112737.
  10. Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020e), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  11. Al-Furjan, M., Habibi, M., Ebrahimi, F., Chen, G., Safarpour, M. and Safarpour, H. (2020f), "A coupled thermomechanics approach for frequency information of electrically composite microshell using heat-transfer continuum problem", Eur. Phys. J. Plus, 135(10), 1-45. https://doi.org/10.1140/epjp/s13360-020-00764-3.
  12. Al-Furjan, M., Habibi, M., Ebrahimi, F., Mohammadi, K. and Safarpour, H. (2020g), "Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2020.1831099.
  13. Al-Furjan, M., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2020h), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  14. Al-Furjan, M., Habibi, M. and Safarpour, H. (2020i), "Vibration control of a smart shell reinforced by graphene nanoplatelets", Int. J. Appl. Mech., 12(6), 2050066. https://doi.org/10.1142/S1758825120500660.
  15. Al-Furjan, M., Habibi, M., won Jung, D., Chen, G., Safarpour, M. and Safarpour, H. (2020j), "Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel", Eur. J. Mech. A Solids, 85, 104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
  16. Al-Furjan, M., Habibi, M., won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020k), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  17. Al-Furjan, M., Habibi, M., won Jung, D. and Safarpour, H. (2020q), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 257, 113152. https://doi.org/10.1016/j.compstruct.2020.113152.
  18. Al-Furjan, M., Mohammadgholiha, M., Alarifi, I.M., Habibi, M. and Safarpour, H. (2020l), "On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01152-2.
  19. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020m), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis", Thin-Walled Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
  20. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020n), "Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01167-9.
  21. Al-Furjan, M., Oyarhossein, M.A., Habibi, M., Safarpour, H., Jung, D.W. and Tounsi, A. (2020o), "On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel", Compos. Struct., 255, 112947. https://doi.org/10.1016/j.compstruct.2020.112947.
  22. Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020p), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  23. Al-Furjan, M.S.H., Moghadam, S.A., Dehini, R., Shan, L., Habibi, M. and Safarpour, H. (2020q), "Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling", Thin-Walled Struct., 107242. https://doi.org/10.1016/j.tws.2020.107242.
  24. Al-Furjan, M., Dehini, R., Paknahad, M., Habibi, M. and Safarpour, H. (2021), "On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment", Arch. Civ. Mech. Eng., 21(1), 1-25. https://doi.org/10.1007/s43452-020-00151-w.
  25. Alam, Z., Sun, L., Zhang, C., Su, Z. and Samali, B. (2020a), "Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure", Struct. Infrastruct. Eng., 17(1), 86-102. https://doi.org/10.1080/15732479.2020.1730914.
  26. Alam, Z., Zhang, C. and Samali, B. (2020b), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Special Buildings, 29(12), e1750. https://doi.org/10.1002/tal.1750.
  27. Alam, Z., Zhang, C. and Samali, B. (2020c), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.
  28. Atabak, R., Sedighi, H.M., Reza, A. and Mirshekari, E. (2020), "Instability analysis of bi-axial micro-scanner under electromagnetic actuation including small scale and damping effects", Microsyst. Technol., 1-24. https://doi.org/10.1007/s00542-020-04802-z.
  29. Bagheri, H., Kiani, Y. and Eslami, M. (2019), "Asymmetric compressive stability of rotating annular plates", Eur. J. Comput. Mech., 1-21. https://doi.org/10.1080/17797179.2018.1560989.
  30. Bai, B., Li, H., Zhang, W. and Cui, Y. (2020), "Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk", J. Sound Vib., 472, 115210. https://doi.org/10.1016/j.jsv.2020.115210.
  31. Bisheh, H., Alibeigloo, A., Safarpour, M. and Rahimi, A. (2019), "Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method", Int. J. Appl. Mech., 11(8), 1950073. https://doi.org/10.1142/S175882511950073X.
  32. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  33. Cao, L. (2020), "Changing port governance model: Port spatial structure and trade efficiency", J. Coastal Res., 95(sp1), 963-968. https://doi.org/10.2112/SI95-187.1.
  34. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  35. Cui, D., Li, J., Zhang, X., Zhang, L., Chang, H. and Wang, Q. "Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD", J. Anal. Appl. Pyrolysis, 153, 104980. https://doi.org/10.1016/j.jaap.2020.104980.
  36. Dai, T., Dai, H.-L. and Lin, Z.-Y. (2019), "Multi-field mechanical behavior of a rotating porous FGMEE circular disk with variable thickness under hygrothermal environment", Compos. Struct., 210, 641-656. https://doi.org/10.1016/j.compstruct.2018.11.077.
  37. De Villoria, R.G. and Miravete, A. (2007), "Mechanical model to evaluate the effect of the dispersion in nanocomposites", Acta Materialia, 55(9), 3025-3031. https://doi.org/10.1016/j.actamat.2007.01.007.
  38. Dong, Q. and Cui, L. (2021), "Reliability analysis of a system with two-stage degradation using Wiener processes with piecewise linear drift", IMA J. Manage. Math., 32(1), 3-29. https://doi.org/10.1093/imaman/dpaa009.
  39. Dong, Q., Cui, L. and Si, S. (2020), "Reliability and availability analysis of stochastic degradation systems based on bivariate Wiener processes", Appl. Math. Model., 79, 414-433. https://doi.org/10.1016/j.apm.2019.10.044.
  40. Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer", Eur. Phys. J. Plus. 135(2), 144. https://doi.org/10.1140/epjp/s13360-020-00217-x.
  41. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357.
  42. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E. and Mahmoud, S. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  43. Ghabussi, A., Ashrafi, N., Shavalipour, A., Hosseinpour, A., Habibi, M., Moayedi, H., Babaei, B. and Safarpour, H. (2019), "Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter", Mech. Based Des. Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2019.1705166.
  44. Ghiasian, S., Kiani, Y., Sadighi, M. and Eslami, M. (2014), "Thermal buckling of shear deformable temperature dependent circular/annular FGM plates", Int. J. Mech. Sci., 81, 137-148. https://doi.org/10.1016/j.ijmecsci.2014.02.007.
  45. Gholami, R. and Ansari, R. (2019), "On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: A unified higher-order shear deformable model", Iran. J. Sci. Technol. Trans. Mech. Eng., 43(1), 603-620. https://doi.org/10.1007/s40997-018-0182-9.
  46. Gholipour, G., Zhang, C. and Mousavi, A.A. (2020a), "Numerical analysis of axially loaded RC columns subjected to the combination of impact and blast loads", Eng. Struct., 219, 110924. https://doi.org/10.1016/j.engstruct.2020.110924.
  47. Gholipour, G., Zhang, C. and Mousavi, A.A. (2020b), "Nonlinear numerical analysis and progressive damage assessment of a cable-stayed bridge pier subjected to ship collision", Mar. Struct., 69, 102662. https://doi.org/10.1016/j.marstruc.2019.102662.
  48. Gunasekaran, V., Pitchaimani, J. and Chinnapandi, L.B.M. (2020), "Analytical investigation on free vibration frequencies of polymer nano composite plate: Effect of graphene grading and non-uniform edge loading", Mater. Today Commun., 24, 100910. https://doi.org/10.1016/j.mtcomm.2020.100910.
  49. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct. Machines, 1-19. https://doi.org/10.1080/15397734.2019.1697932.
  50. Habibi, M., Safarpour, M. and Safarpour, H. (2020), "Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods", Mech. Based Des. Struct. Machines, 1-22. https://doi.org/10.1080/15397734.2020.1779086.
  51. Han, J.B. and Liew, K. (1999), "Axisymmetric free vibration of thick annular plates", Int. J. Mech. Sci., 41(9), 1089-1109. https://doi.org/10.1016/S0020-7403(98)00057-5.
  52. Hosseini-Hashemi, S., Es'haghi, M. and Taher, H.R.D. (2010), "An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory", Compos. Struct., 92(6), 1333-1351. https://doi.org/10.1016/j.compstruct.2009.11.006.
  53. Hu, Y. and Li, W. (2019), "Magnetoelastic axisymmetric multi-modal resonance and Hopf bifurcation of a rotating circular plate under aerodynamic load", Nonlinear Dynam., 97(2), 1295-1311. https://doi.org/10.1007/s11071-019-05049-8.
  54. Hu, Y. and Wang, T. (2016), "Nonlinear free vibration of a rotating circular plate under the static load in magnetic field", Nonlinear Dynam., 85(3), 1825-1835. https://doi.org/10.1007/s11071-016-2798-x.
  55. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  56. Huang, Z., Yi, S., Chen, H. and He, X. (2019), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater., 1099636219842290. https://doi.org/10.1177/1099636219842290.
  57. Issad, M.N., Fekrar, A., Bakora, A., Bessaim, A. and Tounsi, A. (2018), "Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory", Geomech. Eng., 15(1), 711-719. https://doi.org/10.12989/gae.2018.15.1.711.
  58. Jafari Fesharaki, J. and Roghani, M. (2019), "Elastic behavior of functionally graded two tangled circles chamber", J. Appl. Comput. Mech., 5(4), 667-679. https://doi.org/10.22055/JACM.2019.27058.1372.
  59. Javani, M., Kiani, Y. and Eslami, M. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin-Walled Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
  60. Ju, Y., Shen, T. and Wang, D. (2020), "Bonding behavior between reactive powder concrete and normal strength concrete", Construct. Build. Mater., 242, 118024. https://doi.org/10.1016/j.conbuildmat.2020.118024.
  61. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  62. Kordestani, H. and Zhang, C. (2020), "Direct use of the savitzky-golay filter to develop an output-only trend line-based damage detection method", Sensors, 20(7), 1983. https://doi.org/10.3390/s20071983.
  63. Li, C., Sun, L., Xu, Z., Wu, X., Liang, T. and Shi, W. (2020), "Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring", Int. J. Struct. Stabil. Dynam., 20(6), 2040011. https://doi.org/10.1142/S0219455420400118.
  64. Liu, D., Li, Z., Kitipornchai, S. and Yang, J. (2019), "Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates", Compos. Struct., 229, 111453. https://doi.org/10.1016/j.compstruct.2019.111453.
  65. Liu, C., Deng, X., Liu, J., Peng, T., Yang, S. and Zheng, Z. (2020a), "Dynamic response of saddle membrane structure under hail impact", Eng. Struct., 214, 110597. https://doi.org/10.1016/j.engstruct.2020.110597.
  66. Liu, C., Wang, F., Deng, X., Pang, S., Liu, J., Wu, Y. and Xu, Z. (2020b), "Hailstone-induced dynamic responses of pretensioned umbrella membrane structure", Adv. Struct. Eng., 24(1), 3-16. https://doi.org/10.1177/1369433220940149.
  67. Liu, C., Wang, F., He, L., Deng, X., Liu, J. and Wu, Y. (2020c), "Experimental and numerical investigation on dynamic responses of the umbrella membrane structure excited by heavy rainfall", J. Vib. Control, 1077546320932691. https://doi.org/10.1177/1077546320932691.
  68. Liu, J., Wu, C., Wu, G. and Wang, X. (2015), "A novel differential search algorithm and applications for structure design", Appl. Math. Comput., 268, 246-269. https://doi.org/10.1016/j.amc.2015.06.036.
  69. Liu, J., Liu, Y. and Wang, X. (2020d), "An environmental assessment model of construction and demolition waste based on system dynamics: A case study in Guangzhou", Environ. Sci. Pollut. Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
  70. Liu, J., Yi, Y. and Wang, X. (2020e), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Clean. Prod., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185.
  71. Long, Q., Wu, C. and Wang, X. (2015), "A system of nonsmooth equations solver based upon subgradient method", Appl. Math. Comput., 251, 284-299. https://doi.org/10.1016/j.amc.2014.11.064.
  72. Lori, E.S., Ebrahimi, F., Supeni, E.E.B., Habibi, M. and Safarpour, H. (2020), "The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01004-z.
  73. Mahinzare, M., Ranjbarpur, H. and Ghadiri, M. (2018), "Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate", Mech. Syst. Signal Pr., 100, 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041.
  74. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(01), 2050010. https://doi.org/10.1142/S1758825120500106.
  75. Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2019), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 1099636219839302. https://doi.org/10.1177/1099636219839302.
  76. Mohseni, A. and Shakouri, M. (2020), "Natural frequency, damping and forced responses of sandwich plates with viscoelastic core and graphene nanoplatelets reinforced face sheets", J. Vib. Control., 1077546319893453. https://doi.org/10.1177/1077546319893453.
  77. Moraveji Tabasi, H., Eskandari Jam, J., Malekzadeh Fard, K. and Heydari Beni, M. (2020), "Buckling and free vibration analysis of fiber metal-laminated plates resting on partial elastic foundation", J. Appl. Comput. Mech., 6(1), 37-51. https://doi.org/10.22055/JACM.2019.28156.1489.
  78. Mousavi, A.A., Zhang, C., Masri, S.F. and Gholipour, G. (2020), "Structural damage localization and quantification based on a CEEMDAN hilbert transform neural network approach: A model steel truss bridge case study", Sensors, 20(5), 1271. https://doi.org/10.3390/s20051271.
  79. Ouakad, H.M. and Sedighi, H.M. (2019), "Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern", Int. J. Non-Linear Mech., 110, 44-57. https://doi.org/10.1016/j.ijnonlinmec.2018.12.011.
  80. Pang, R., Xu, B., Kong, X. and Zou, D. (2018), "Seismic fragility for high CFRDs based on deformation and damage index through incremental dynamic analysis", Soil Dyn. Earthq. Eng., 104, 432-436. https://doi.org/10.1016/j.soildyn.2017.11.017
  81. Pang, R., Xu, B., Zhou, Y., Zhang, X. and Wang, X. (2020), "Fragility analysis of high CFRDs subjected to main shock-aftershock sequences based on plastic failure", Eng. Struct., 206, 110152. https://doi.org/10.1016/j.engstruct.2019.110152.
  82. Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044.
  83. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119. https://doi.org/10.12989/gae.2020.22.2.119.
  84. Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2), 141-150. https://doi.org/10.12989/gae.2018.16.2.141.
  85. Safarpour, H., Mohammadi, K. and Ghadiri, M. (2017), "Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: A numerical solution", J. Mech. Behavior Mater., 26(1-2), 9-24. https://doi.org/10.1515/jmbm-2017-0010.
  86. Safarpour, H., Mohammadi, K., Ghadiri, M. and Barooti, M.M. (2018), "Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM", Int. J. Struct. Stabil. Dynam., 18(10), 1850123. https://doi.org/10.1142/S0219455418501237.
  87. Safarpour, M., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM", Thin-Walled Struct., 150, 106683. https://doi.org/10.1016/j.tws.2020.106683.
  88. Safarpour, M., Rahimi, A. and Alibeigloo, A. (2019), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct. Machines, 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  89. Sedighi, H.M. (2020), "Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid", Acta Mechanica Sinica, 36(2), 381-396. https://doi.org/10.1007/s10409-019-00924-4.
  90. Sedighi, H.M. and Daneshmand, F. (2014), "Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term", J. Appl. Comput. Mech., 1(1), 1-9. https://doi.org/10.22055/jacm.2014.10545.
  91. Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Physica Scripta, 95(6), 065204. https://doi.org/10.1088/1402-4896/ab793f/meta.
  92. Shokrgozar, A., Ghabussi, A., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell", Mech. Based Des. Struct. Machines, 1-28. https://doi.org/10.1080/15397734.2020.1719509.
  93. Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media
  94. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  95. Song, M., Li, X., Kitipornchai, S., Bi, Q. and Yang, J. (2019), "Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates", Nonlinear Dynam., 95(3), 2333-2352. https://doi.org/10.1007/s11071-018-4695-y.
  96. Sun, L., Li, C., Zhang, C., Liang, T. and Zhao, Z. (2019), "The strain transfer mechanism of fiber bragg grating sensor for extra large strain monitoring", Sensors, 19(8), 1851. https://doi.org/10.3390/s19081851.
  97. Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020), "Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns", Int. J. Struct. Stabil. Dynam., 20(06), 2040004. https://doi.org/10.1142/S0219455420400040.
  98. Tran, T.T., Tran, V.K., Le, P.B., Phung, V.M., Do, V.T. and Nguyen, H.N. (2020), "Forced vibration analysis of laminated composite shells reinforced with graphene nanoplatelets using finite element method", Adv. Civ. Eng. https://doi.org/10.1155/2020/1471037.
  99. Wang, J., Lu, S., Wang, Y., Li, C. and Wang, K. (2020a), "Effect analysis on thermal behavior enhancement of lithium-ion battery pack with different cooling structures", J. Energy Storage. 32 101800. https://doi.org/10.1016/j.est.2020.101800.
  100. Wang, Q., Liu, B. and Wang, Z. (2020b), "Investigation of heat transfer mechanisms among particles in horizontal rotary retorts", Powder Technol., 367, 82-96. https://doi.org/10.1016/j.powtec.2020.03.042.
  101. Wang, Y., Zeng, R. and Safarpour, M. (2020c), "Vibration analysis of FG-GPLRC annular plate in a thermal environment", Mech. Based Des. Struct. Machines, 1-19. https://doi.org/10.1080/15397734.2020.1719508.
  102. Wu, C., Wu, P., Wang, J., Jiang, R., Chen, M. and Wang, X. (2021), "Ontological knowledge base for concrete bridge rehabilitation project management", Automat. Constr., 121, 103428. https://doi.org/10.1016/j.autcon.2020.103428.
  103. Wu, H., Zhu, J., Kitipornchai, S., Wang, Q., Ke, L.L. and Yang, J. (2020), "Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments", Compos. Struct., 239, 112047. https://doi.org/10.1016/j.compstruct.2020.112047.
  104. Wu, T., Cao, J., Xiong, L. and Zhang, H. (2019), "New stabilization results for semi-Markov chaotic systems with fuzzy sampled-data control", Complexity. https://doi.org/10.1155/2019/7875305.
  105. Xiong, L., Zhang, H., Li, Y. and Liu, Z. (2016), "Improved stability and H∞ performance for neutral systems with uncertain Markovian jump", Nonlinear Anal. Hybrid Syst., 19, 13-25. https://doi.org/10.1016/j.nahs.2015.07.005
  106. Xu, B., Pang, R. and Zhou, Y. (2020), "Verification of stochastic seismic analysis method and seismic performance evaluation based on multi-indices for high CFRDs", Eng. Geol., 264, 105412. https://doi.org/10.1016/j.enggeo.2019.105412.
  107. Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044.
  108. Yang, Z., Xu, P., Wei, W., Gao, G., Zhou, N. and Wu, G. (2020), "Influence of the crosswind on the pantograph arcing dynamics", IEEE T. Plasma Sci., 48(8), 2822-2830. https://doi.org/10.1109/TPS.2020.3010553.
  109. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  110. Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019a), "Fibre Bragg grating sensor‐based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Control Health Monit., 26(3), e2307. https://doi.org/10.1002/stc.2307.
  111. Zhang, C., Gholipour, G. and Mousavi, A.A. (2019b), "Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading", Eng. Struct., 181, 124-142. https://doi.org/10.1016/j.engstruct.2018.12.014.
  112. Zhang, C. and Wang, H. (2019c), "Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations", Appl. Sci., 9(20), 4391. https://doi.org/10.3390/app9204391.
  113. Zhang, C. and Wang, H. (2019d), "Swing vibration control of suspended structure using active rotary inertia driver system: Parametric analysis and experimental verification", Appl. Sci., 9(15), 3144. https://doi.org/10.3390/app9153144.
  114. Zhang, C., Abedini, M. and Mehrmashhadi, J. (2020a), "Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation", Eng. Struct., 224, 111219. https://doi.org/10.1016/j.engstruct.2020.111219.
  115. Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-of-the-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Meth. Eng., 1-31. https://doi.org/10.1007/s11831-020-09467-5.
  116. Zhang, C. and Wang, H. (2020c), "Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification", Struct. Control Health Monit., 27(6), e2543. https://doi.org/10.1002/stc.2543.
  117. Zhang, S., Pak, R.Y. and Zhang, J. (2020d), "Vertical time-harmonic coupling vibration of an impermeable, rigid, circular plate resting on a finite, poroelastic soil layer", Acta Geotechnica. 1-25. https://doi.org/10.1007/s11440-020-01067-8.
  118. Zhang, S., Zhang, J., Ma, Y. and Pak, R.Y. (2020e), "Vertical dynamic interactions of poroelastic soils and embedded piles considering the effects of pile-soil radial deformations", Soils Found., 61(1), 16-34. https://doi.org/10.1016/j.sandf.2020.10.003.
  119. Zhang, Z., Luo, C. and Zhao, Z. (2020f), "Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography", Nat. Hazards, 104(3), 2511-2530. https://doi.org/10.1007/s11069-020-04283-3.
  120. Zheng, J., Zhang, C. and Li, A. (2020g), "Experimental investigation on the mechanical properties of curved metallic plate dampers", Appl. Sci., 10(1), 269. https://doi.org/10.3390/app10010269.
  121. Zhu, J., Shi, Q., Wu, P., Sheng, Z. and Wang, X. (2018), "Complexity analysis of prefabrication contractors' dynamic price competition in mega projects with different competition strategies", Complexity. https://doi.org/10.1155/2018/5928235.
  122. Zhu, L., Kong, L. and Zhang, C. (2020), "Numerical study on hysteretic behaviour of horizontal-connection and energy-dissipation structures developed for prefabricated shear walls", Appl. Sci., 10(4), 1240. https://doi.org/10.3390/app10041240.
  123. Zhu, L., Zhang, C., Guan, X., Uy, B., Sun, L. and Wang, B. (2018), "The multi-axial strength performance of composited structural BCW members subjected to shear forces", Steel Compos. Struct., 27(1), 75-87. https://doi.org/10.12989/scs.2018.27.1.075.
  124. Zuo, C., Chen, Q., Gu, G., Feng, S., Feng, F., Li, R. and Shen, G. (2013), "High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection", Opt. Laser. Eng., 51(8), 953-960. https://doi.org/10.1016/j.optlaseng.2013.02.012.