DOI QR코드

DOI QR Code

Reliability analysis of strip footing under rainfall using KL-FORM

  • Fei, Suozhu (School of Resources and Environmental Engineering, Hefei University of Technology) ;
  • Tan, Xiaohui (School of Resources and Environmental Engineering, Hefei University of Technology) ;
  • Gong, Wenping (Faculty of Engineering, China University of Geosciences) ;
  • Dong, Xiaole (School of Resources and Environmental Engineering, Hefei University of Technology) ;
  • Zha, Fusheng (School of Resources and Environmental Engineering, Hefei University of Technology) ;
  • Xu, Long (School of Resources and Environmental Engineering, Hefei University of Technology)
  • 투고 : 2020.07.15
  • 심사 : 2021.01.08
  • 발행 : 2021.01.25

초록

Spatial variability is an inherent uncertainty of soil properties. Current reliability analyses generally incorporate random field theory and Monte Carlo simulation (MCS) when dealing with spatial variability, in which the computational efficiency is a significant challenge. This paper proposes a KL-FORM algorithm to improve the computational efficiency. In the proposed KL-FORM, Karhunen-Loeve (KL) expansion is used for discretizing random fields, and first-order reliability method (FORM) is employed for reliability analysis. The KL expansion and FORM can be used in conjunction, through adopting independent standard normal variables in the discretization of KL expansion as the basic variables in the FORM. To illustrate the effectiveness of this KL-FORM, it is applied to a case study of a strip footing in spatially variable unsaturated soil under rainfall, in which the bearing capacity of the footing is computed by numerical simulation. This case study shows that the KL-FORM is accurate and efficient. The parametric analyses suggest that ignoring the spatial variability of the soil may lead to an underestimation of the reliability index of the footing.

키워드

과제정보

This work was supported by the National Natural Science Foundation, China (41972278; 41572282). We would like to thank Uni-edit (www.uni-edit.net) for editing and proofreading this manuscript.

참고문헌

  1. Ahmed, A. and Soubra, A.H. (2014), "Probabilistic analysis at the serviceability limit state of two neighboring strip footings resting on a spatially random soil", Struct. Saf., 49, 2-9. http://doi.org/10.1016/j.strusafe.2013.08.001.
  2. Ahmed, A.A. (2009), "Stochastic analysis of free surface flow through earth dams", Comput. Geotech., 36(7), 1186-1190. https://doi.org/10.1016/j.compgeo.2009.05.005.
  3. Al-Bittar, T., Soubra, A.H. and Thajeel, J. (2018), "Kriging-based reliability analysis of strip footings resting on spatially varying soils", J. Geotech. Geoenviron. Eng., 144(10), 04018071. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001958.
  4. Cheon, J.Y. and Gilbert, R.B. (2014), "Modeling spatial variability in offshore geotechnical properties for reliability-based foundation design", Struct. Saf., 49, 18-26. https://doi.org/10.1016/j.strusafe.2013.07.008.
  5. Cho, S.E. and Park, H.C. (2010), "Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing", Int. J. Numer. Anal. Meth. Geomech., 34(1), 1-26. https://doi.org/10.1002/nag.791.
  6. Deodatis, G. (1991), "Weighted integral method I: Stochastic stiffness matrix", J. Eng. Mech., 117(8), 1851-1864. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:8(1851).
  7. Dithinde, M., Phoon, K.K., Wet, M.D. and Retief, V. (2011), "Characterization of model uncertainty in the static pile design formula", J. Geotech. Geoenviron. Eng., 137(1), 70-85. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000401.
  8. Duncan, J.M. (2000), "Factors of safety and reliability in geotechnical engineering", J. Geotech. Geoenviron. Eng., 126(4), 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).
  9. Fei S.Z., Tan X.H., Wang X., Du L.F. and Sun Z.H. (2019), "Evaluation of soil spatial variability by micro-structure simulation", Geomech. Eng., 17(6), 565-572. https://doi.org/10.12989/gae.2019.17.6.565.
  10. Firouzianbandpey, S., Griffiths, D.V. and Andersen, L.V. (2014), "Spatial correlation length of normalized cone data in sand: Case study in the north of Denmark", Can. Geotech. J., 51(8), 844-857. https://doi.org/10.1139/cgj-2013-0294.
  11. Fredlund, D.G. and Houston, S.L. (2009), "Protocol for the assessment of unsaturated soil properties in geotechnical engineering practice", Can. Geotech. J., 46(6), 694-707. http://doi.org/10.1139/T09-010.
  12. Gong, W., Juang, C.H. and Martin, J.R. (2016), "A new framework for probabilistic analysis of the performance of a supported excavation in clay considering spatial variability", Geotechnique, 67(6), 546-552. https://doi.org/10.1680/jgeot.15.P.268.
  13. Gong, W.P., Juang, C.H., Martin, J.R., Tang, H.M., Wang, Q.Q. and Huang, H.W. (2018), "Probabilistic analysis of tunnel longitudinal performance based upon conditional random field simulation of soil properties", Tunn. Undergr. Sp. Tech., 73, 1-14. https://doi.org/10.1016/j.tust.2017.11.026.
  14. Gravanis, E., Pantelidis, L. and Griffiths, D.V. (2014), "An analytical solution in probabilistic rock slope stability assessment based on random fields", Int. J. Rock Mech. Min. Sci., 71, 19-24. https://doi.org/10.1016/j.ijrmms.2014.06.018.
  15. Gui, S.X., Zhang, R.D. and Xue, X.Z. (2000), "Probabilistic slope stability analysis with stochastic soil hydraulic conductivity", J. Geotech. Geoenviron. Eng., 136(1), 1-9. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(1).
  16. Itasca (2006), Reference Manual, FLAC 5.0. Minneapolis, Itasca Consulting Group Inc, Minnesota, U.S.A.
  17. Jha, S.K. and Ching, J. (2013), "Simulating spatial averages of stationary random field using the fourier series method", J. Eng. Mech., 139(5), 594-605. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000517.
  18. Ji, J. and Kodikara, J.K. (2015), "Efficient reliability method for implicit limit state surface with correlated non-Gaussian variables", Int. J. Numer. Anal. Meth. Geomech., 39, 1898-1911. http://doi.org/10.1002/nag.2380.
  19. Ji, J., Liao, H.L. and Low, B.K. (2012), "Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations", Comput. Geotech., 40(3), 135-146. http://doi.org/10.1016/j.compgeo.2011.11.002.
  20. Ji, J., Zhang, C.S., Gao, Y.F. and Kodikara, J. (2018), "Effect of 2D spatial variability on slope reliability: A simplified FORM analysis", Geosci. Front., 9, 1631-1638. https://doi.org/10.1016/j.gsf.2017.08.004.
  21. Jiang, S.H. and Huang, J.S. (2016), "Efficient slope reliability analysis at low-probability levels in spatially variable soils", Comput. Geotech., 75, 18-27. https://doi.org/10.1016/j.compgeo.2016.01.016.
  22. Jiang, S.H., Li, D.Q., Zhang, L.M. and Zhou, C.B. (2014), "Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method", Eng. Geol., 168, 120-128. https://doi.org/10.1016/j.enggeo.2013.11.006.
  23. Laloy, E., Rogiers, B., Vrugt, J.A., Mallants, D. and Jacques, D. (2013), "Efficient posterior exploration of a high-dimensional groundwater model from two-stage MCMC simulation and polynomial chaos expansion", Water Resour. Res., 49(5), 2664-2682. https://doi.org/10.1002/wrcr.20226.
  24. Le, T.M.H., Gallipoli, D., Sanchez, M. and Wheeler, S. (2015), "Stability and failure mass of unsaturated heterogeneous slopes", Can. Geotech. J., 52(11), 1747-1761. https://doi.org/10.1139/cgj-2014-0190.
  25. Li, D.Q., Xiao, T., Cao, Z.J., Zhou, C.B. and Zhang, L.M. (2016), "Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using Subset Simulation", Landslides, 13, 293-303. http://doi.org/10.1007/s10346-015-0569-2.
  26. Li, W.X., Lu, Z.M. and Zhang, D.X. (2009), "Stochastic analysis of unsaturated flow with probabilistic collocation method", Water Resour. Res., 45, W08425. http://doi.org/10.1029/2008WR007530.
  27. Liu, L.L., Cheng, Y.M. and Zhang, S.H. (2017), "Conditional random field reliability analysis of a cohesion-frictional slope", Comput. Geotech., 82, 173-186. https://doi.org/10.1016/j.compgeo.2016.10.014.
  28. Lombardi M., Cardarilli M. and Raspa G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. https://doi.org/10.12989/gae.2017.12.3.483.
  29. Montoya-Noguera, S., Zhao, T.Y., Hu, Y., Wang, Y. and Phoon, K.K. (2019), "Simulation of non-stationary non-Gaussian random fields from sparse measurements using Bayesian compressive sampling and Karhunen-Loève expansion", Struct. Saf., 79, 66-79. https://doi.org/10.1016/j.strusafe.2019.03.006.
  30. Moshtaghin, A.F., Franke, S. and Keller, T. (2016), "Vassilopoulos AP. Random field-based modeling of size effect on the longitudinal tensile strength of clear timber", Struct. Saf., 58, 60-68. https://doi.org/10.1016/j.strusafe.2015.09.002.
  31. Mouyeaux, A., Carvajal, C., Bressolette, P., Peyras, L., Breul, P. and Bacconnet, C. (2018), "Probabilistic stability analysis of an earth dam by stochastic Finite Element Method based on field data", Comput. Geotech., 101, 34-47. https://doi.org/10.1016/j.compgeo.2018.04.017.
  32. Papaioannou, I., Betz, W., Zwirglmaier, K. and Straub, D. (2015), "MCMC algorithms for subset simulation", Probabilist. Eng. Mech., 41, 89-103. http://doi.org/10.1016/j.probengmech.2015.06.006.
  33. Phoon, K.K. and Kulhawy, F.H. (1999), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
  34. Phoon, K.K., Huang, H.W. and Quek, S.T. (2005), "Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion", Probabilist. Eng. Mech., 20(2), 188-198. https://doi.org/10.1016/j.probengmech.2005.05.007.
  35. Phoon, K.K., Huang, S.P. and Quek, S.T. (2002), "Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme", Probabilist. Eng. Mech., 17(3), 293-303. https://doi.org/10.1016/S0266-8920(02)00013-9.
  36. Phoon, K.K., Quek, S.T. and Huang, H.W. (2004), "Simulation of non-Gaussian processes using fractile correlation", Probabilist. Eng. Mech., 19(4), 287-292. https://doi.org/10.1016/j.probengmech.2003.09.001.
  37. Qi S.C., Vanapalli S.K., Yang X.G., Zhou J.W. and Lu G.D. (2019), "Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration", Geomech. Eng., 19(1), 1-9. https://doi.org/10.12989/gae.2019.19.1.001.
  38. Rackwitz, R. (2000), "Reviewing probabilistic soils modelling", Comput. Geotech., 26(3-4), 199-223. https://doi.org/10.1016/S0266-352X(99)00039-7
  39. Roberts, L.A. and Misra. A. (2009), "Reliability-based design of deep foundations based on differential settlement criterion", Can. Geotech. J., 46(2), 168-176. https://doi.org/10.1139/T08-117.
  40. Sachdeva, S.K., Nair, P.B. and Keane, A.J. (2007), "On using deterministic FEA software to solve problems in stochastic structural mechanics", Comput. Struct., 85(5-6), 277-290. https://doi.org/10.1016/j.compstruc.2006.10.008.
  41. Santoso, A.M., Phoon, K.K. and Quek, S.T. (2011), "Effects of soil spatial variability on rainfall-induced landslides", Comput. Struct., 89(11-12), 893-900. https://doi.org/10.1016/j.compstruc.2011.02.016.
  42. Schueller, G.L. and Jensen, H.A. (2008), "Computational methods in optimization considering uncertainties - an overview", Comput. Method. Appl. M., 198(1), 2-13. https://doi.org/10.1016/j.cma.2008.05.004.
  43. Stefanou, G. (2009), "The stochastic finite element method-Past present and future", Comput. Method. Appl. M., 198(9-12), 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007.
  44. Sudret, B. and Der Kiureghian, A. (2000), "Stochastic finite element methods and reliability", Technical Report No. UCB-SEMM-2000-08; Mechanics and Materials Department of Civil & Environmental Engineering, University of California, California, U.S.A.
  45. Tan, X.H. and Wang, J.G. (2009), "Finite element reliability analysis of slope stability", J. Zhejiang Univ. Sci. A, 10(5), 645-652. http://doi.org/10.1631/jzus.A0820542.
  46. Tan, X.H., Wang, X., Khoshnevisan, S., Hou, X.L. and Zha, F.S. (2017), "Seepage analysis of earth dams considering spatial variability of hydraulic parameters", Eng. Geol., 228, 260-269. https://doi.org/10.1016/j.enggeo.2017.08.018.
  47. Tan, X.H., Xie, Y., Hou, X.L., Li, P. and Wang, X. (2017), "Reliability analysis of shallow foundations on unsaturated soils under rainfall infiltration", Proceedings of the Geo-Risk 2017, Denver, Colorado, U.S.A., June.
  48. van Genuchten, M.T. (1980), "A closed form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Am. J., 44(5), 892-898. http://doi.org/10.2136/sssaj1980.03615995004400050002x.
  49. Vanmarcke, E. and Grigoriu, M. (1983), "Stochastic finite element analysis of simple beams", J. Eng. Mech., 109, 1203-1214. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203).
  50. Vanmarcke, E.H. (1977), "Probabilistic modeling of soil profiles", J. Geotech. Eng. Div., 103, 1227-1246. https://doi.org/10.1061/AJGEB6.0000517
  51. Zhang, J. and Ellingwood, B. (1994), "Orthogonal series expansions of random fields in reliability analysis", J. Eng. Mech., 120, 2660-2677. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2660).