Acknowledgement
The authors are grateful to the financial support from the National Natural Science Foundation of China (52074269) and China Postdoctoral Science Foundation (Nos. 2020T130698 and 2018 M640534).
References
- Bieniawski, Z.T. (1967), "The effect of specimen size on compressive strength of coal", Int. J. Rock Mech. Min. Sci., 5(4), 325-335. https://doi.org/10.1016/0148-9062(68)90004-1.
- Brotons, V., Tomas, R., Ivorra, S. and Alarcon, J.C. (2013), "Temperature influence on the physical and mechanical properties of a porous rock: San Julian's calcarenite", Eng. Geol., 167(4), 117-127. https://doi.org/10.1016/j.enggeo.2013.10.012.
- Ding, Q.L, Ju, F., Mao, X.B., Ma, D., Yu, B.Y. and Song, S.B. (2016), "Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment", Rock Mech. Rock Eng., 49(7), 2641-2653. https://doi.org/10.1007/s00603-016-0944-x.
- Dwivedia, R.D., Goela, R.K., Prasada, V.V.R. and Sinhab, A. (2008), "Thermo-mechanical properties of Indian and other granites", Int. J. Rock Mech. Min. Sci., 45(3), 303-315. https://doi.org/10.1016/j.ijrmms.2007.05.008.
- Ercikdi, B., Karaman, K., Cihangir, F., Yilmaz, T., Aliyazicioglou, S. and Kesimal, A. (2016) "Core size effect on the dry and saturated ultrasonic pulse velocity of limestone samples", Ultrasonics, 72, 143-149. https://doi.org/10.1016/j.ultras.2016.08.006.
- Guo, Q.Z., Su, H.J., Liu, J.W., Yin, Q., Jing, H.W. and Yu, L.Y. (2020), "An experimental study on the fracture behaviors of marble specimens subjected to high temperature treatment", Eng. Fract. Mech., 225, 106862. https://doi.org/10.1016/j.engfracmech.2019.106862.
- Jamshidi, A., Zamanian, H. and Sahamieh, R.Z. (2018) "The effect of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity", Rock Mech. Rock Eng., 51(4), 1-8. https://doi.org/10.1007/s00603-017-1379-8.
- Kong, B., Wang, E.Y., Li, Z.H., Wang, X.R., Liu, J. and Li, N. (2016), "Fracture mechanical behavior of sandstone subjected to high-temperature treatment and its acoustic emission characteristics under uniaxial compression conditions", Rock Mech. Rock Eng., 49(12), 4911-4918. https://doi.org/10.1007/s00603-016-1011-3.
- Liu, S. and Xu, J.Y. (2015a), "An experimental study on the physico-mechanical properties of two post-high-temperature rocks", Eng. Geol., 185, 63-70. https://doi.org/10.1016/j.enggeo.2014.11.013.
- Liu, S. and Xu, J.Y. (2015b), "Fractal analysis for dynamic failure characteristics of granite induced by mechanical-thermal loading", Geotech. Lett., 5(3), 191-197. https://doi.org/10.1680/jgele.15.00035.
- Masoumi, H., Saydam, S. and Hagan, P.C. (2016), "Unified size-effect law for intact rock", Int. J. Geomech., 16(2), 04015059. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000543.
- Peng, J., Rong, G., Cai, M., Yao, M.Q. and Zhou, C.B. (2016), "Physical and mechanical behaviors of a thermal-damaged coarse marble under uniaxial compression", Eng. Geol., 200(12), 88-93. https://doi.org/10.1016/j.enggeo.2015.12.011.
- Quinones, J., Arzua, J., Alejano, L.R., Garcia-Bastante, F., Mas Ivars, D. and Walton, G. (2017), "Analysis of size effects on the geomechanical parameters of intact granite samples under unconfined conditions", Acta Geotech., 12(6), 1229-1242. https://doi.org/10.1007/s11440-017-0531-7.
- Ranjith, P.G., Daniel, R.V., Bai, J.C., Alarcon, J.C. and Samintha, A.P. (2012), "Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure", Eng. Geol., 151, 120-127. https://doi.org/10.1016/j.enggeo.2012.09.007.
- Su, H.J., Guo, Q.Z., Jing, H.W., Yu, L.Y., Liu, J.W. and Gao, Y.N. (2020) "Mechanical performances and pore features of coal subjected to heat treatment in approximately vacuum environment", Int. J. Geomech., 20(7), 06020011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001713.
- Sun, Q., Zhang, W.Q., Xue, L., Zhang, Z.Z. and Su, T.M. (2015), "Thermal damage pattern and thresholds of granite", Environ. Earth Sci., 74(3), 2341-2349. https://doi.org/10.1007/s12665-015-4234-9.
- Tian, H., Mei, G., Jiang, G.S. and Qin, Y. (2017), "High-temperature influence on mechanical properties of diorite", Rock Mech. Rock Eng., 50(6), 1661-1666. https://doi.org/10.1007/s00603-017-1185-3.
- Wu, J.Y., Feng, M.M., Yu, B.Y. and Han, G.S. (2018), "The length of pre-existing fissures effects on the mechanical properties of cracked red sandstone and strength design in engineering", Ultrasonics, 82, 188-199. https://doi.org/10.1016/j.ultras.2017.08.010.
- Yin, T.B., Shu, R.H., Li, X.B., Wang, P. and Liu, X.L. (2016), "Comparison of mechanical properties in high temperature and thermal treatment granite", Trans. Nonferrous Met. Soc. China, 26(7), 1926-1937. https://doi.org/10.1016/S1003-6326(16)64311-X.
- Zhang, L.Y., Mao, X.B., Liu, R.X., Guo, X.Q. and Ma, D. (2014), "The mechanical properties of mudstone at high temperatures: An experimental study", Rock Mech. Rock Eng., 47(4), 1479-1484. https://doi.org/10.1007/s00603-013-0435-2.
- Zhang, X.P., Zhang, Q. and Wu, S.C. (2017), "Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates", Comput. Geotech., 83, 83-97. https://doi.org/10.1016/j.compgeo.2016.11.003.