DOI QR코드

DOI QR Code

Forced vibration of a functionally graded porous beam resting on viscoelastic foundation

  • Alnujaie, Ali (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University) ;
  • Eltaher, Mohamed A. (Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Assie, Amr (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
  • Received : 2020.09.29
  • Accepted : 2020.12.29
  • Published : 2021.01.10

Abstract

This paper concerns with forced dynamic response of thick functionally graded (FG) beam resting on viscoelastic foundation including porosity impacts. The dynamic point load is proposed to be triangle point loads in time domain. In current analysis the beam is assumed to be thick, therefore, the two-dimensional plane stress constitutive equation is proposed to govern the stress-strain relationship through the thickness. The porosity and void included in constituent is described by three different distribution models through the beam thickness. The governing equations are obtained by using Lagrange's equations and solved by finite element method. In frame of finite element analysis, twelve-node 2D plane element is exploited to discretize the space domain of beam. In the solution of the dynamic problem, Newmark average acceleration method is used. In the numerical results, effects of porosity coefficient, porosity distribution and foundation parameters on the dynamic responses of functionally graded viscoelastic beam are presented and discussed. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.

Keywords

Acknowledgement

The project was funded by Deanship of Scientific Research (DSR) at Jazan University, Jazan, Kingdom of Saudi Arabia under grant no. W41-045. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. Abdelrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
  2. Abdelrahman, A.A., Nabawy, A.E., Abdelhaleem, A.M., Alieldin, S.S. and Eltaher, M.A. (2020), "Nonlinear dynamics of viscoelastic flexible structural systems by finite element method", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01141-5.
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
  5. Akbas, S.D. (2015), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://doi.org/10.17515/resm2015.03st0107.
  6. Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  7. Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  8. Akbas, S.D. (2017c), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
  9. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
  10. Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  11. Akbas, S.D. (2018c), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
  12. Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
  13. Akbas, S.D. (2021), "Forced vibration responses of axially functionally graded beams by using Ritz method", J. Appl. Comput. Mech., 7(1), 109-115. https://doi.org/10.22055/JACM.2020.34865.2491.
  14. Akbas, S.D., Bashiri, H.A., Assie, A.E. and Eltaher, M.A. (2020a), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 077546320947302. https://doi.org/10.1177/1077546320947302.
  15. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020b), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput. https://doi.org/10.1007/s00366-020-01070-3.
  16. Almitani, K.H., Abdalrahmaan, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
  17. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  18. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Dynamic analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., 12(5), 2050055. https://doi.org/10.1177/1077546320947302.
  19. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010a), "Modeling of viscoelastic contact-impact problems", Appl. Math. Modell., 34(9), 2336-2352. https://doi.org/10.1016/j.apm.2009.11.001.
  20. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010b), "The response of viscoelastic-frictionless bodies under normal impact", Int. J. Mech. Sci., 52(3), 446-454. https://doi.org/10.1016/j.ijmecsci.2009.11.005.
  21. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25(5), 1129-1140. https://doi.org/10.1007/s12206-011-0302-6.
  22. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. http://doi.org/10.12989/sem.2018.65.4.453.
  23. Attia, M.A., Eltaher, M.A., Soliman, A., Abdelrahman, A.A. and Alshorbagy, A.E. (2018), "Thermoelastic crack analysis in functionally graded pipelines conveying natural gas by an FEM", Int. J. Appl. Mech., 10(4), 1850036. https://doi.org/10.1142/S1758825118500369.
  24. Aydogdu, M. and Tashkin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
  25. Babaei, H., Kiani, Y. and Eslami, M.R. (2020), "Large amplitude free vibrations of FGM beams on nonlinear elastic foundation in thermal field based on neutral/mid-plane formulations", Iran. J. Sci. Technol. Trans. Mech. Eng., 1-20. https://doi.org/10.1007/s40997-020-00389-y.
  26. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  27. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. http://doi.org/10.12989/gae.2017.12.1.009.
  28. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  29. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  30. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. http://doi.org/10.12989/gae.2016.11.5.671.
  31. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng. https://doi.org/10.1155/2016/9561504.
  32. Eltaher, M.A. and Mohamed, S.A. (2020b), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  33. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 93-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  34. Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018a), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.
  35. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018b), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
  36. Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013b), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.
  37. Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Modell., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026.
  38. Eltaher, M.A., Mohamed, S.A. and Meliabari, A. (2020a), "Static stability of a unified composite beams under varying axial loads", Thin-Walled Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  39. Fahsi, A., Bouiadjra, B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3D theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
  40. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  41. Fallah, A. and Aghdam, M. (2012), "Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation", Compos. Part B Eng., 43(3), 1523-1530. https://doi.org/10.1016/j.compositesb.2011.08.041.
  42. Fazzolari, F. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
  43. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810. https://doi.org/10.1007/s11012-013-9827-3.
  44. Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361.
  45. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput. 1-18. https://doi.org/10.1007/s00366-020-01023-w.
  46. Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0.
  47. Hamed, M.A., Mohamed, N.A. and Eltaher, M.A. (2020), "Stability buckling and bending of nanobeams including cutouts", Eng. Comput. https://doi.org/10.1007/s00366-020-01063-2.
  48. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  49. Huang, Y., Wang, T., Zhao, Y. and Wang, P. (2018), "Effect of axially functionally graded material on whirling frequencies and critical speeds of a spinning Timoshenko beam", Compos. Struct., 192, 355-367. https://doi.org/10.1016/j.compstruct.2018.02.039.
  50. Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01018-7.
  51. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  52. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  53. Liang, C. and Wang, Y.Q. (2020), "A quasi-3D trigonometric shear deformation theory for wave Propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation", Compos. Struct., 247, 112478-112489. https://doi.org/10.1016/j.compstruct.2020.112478.
  54. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  55. Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  56. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
  57. Mohanty, S.C., Dash, R.R. and Rout, T. (2011), "Parametric instability of a functionally graded Timoshenko beam on Winkler's foundation", Nucl. Eng. Des., 241(8), 2698-2715. https://doi.org/10.1016/j.nucengdes.2011.05.040.
  58. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  59. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B, 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.
  60. Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9.
  61. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  62. Sheng, G.G. and Wang, X. (2019a), "Nonlinear forced vibration of size-dependent functionally graded microbeams with damping effects", Appl. Math. Modell., 71, 421-437. https://doi.org/10.1016/j.apm.2019.02.027.
  63. Sheng, G.G. and Wang, X. (2019b), "Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation", Int. J. Mech. Sci., 155, 405-416. https://doi.org/10.1016/j.ijmecsci.2019.03.015.
  64. Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030.
  65. Simsek, M. and Kocatürk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024.
  66. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  67. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  68. Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. Part B, 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014.
  69. Ying, J., Lü, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
  70. Younsi, A., Tounsi, A., Zoui, F.Z., Bousashla, A.A. and Mohmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  71. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  72. Zouatnia, N., Hadji, L. and Kassoul, A. (2018), "An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions", Geomech. Eng., 16(1), 1-9. https://doi.org/10.12989/gae.2018.16.1.001.

Cited by

  1. Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2021, https://doi.org/10.12989/gae.2021.24.6.545
  2. Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2021, https://doi.org/10.12989/sem.2021.79.1.023
  3. Arching effect in sand piles under base deflection using geometrically non-linear isogeometric analysis vol.26, pp.4, 2021, https://doi.org/10.12989/gae.2021.26.4.369
  4. Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2021, https://doi.org/10.12989/scs.2021.40.5.663